
Supplementary Materials for
Jointly Training and Pruning CNNs via Learnable Agent Guidance and

Alignment

1. Bounding our Agent’s Actions
As mentioned in Section 3.3 of our paper, we calculate the
minimum (al,min) and maximum (al,max) feasible pruning
rates for the l-th layer before pruning it to ensure that reach-
ing the desired FLOPs budget, FLOPsdesire, is still possible
after doing so. However, before formally introducing our
scheme for calculating al,min, al,max, we present how we
implement our pruning actions in practice.

1.1. Implementation of our Agent’s Actions

We describe our implementation for our agent’s actions for
each architecture. For all models, we take each block of a
CNN model as one ‘layer’ in our framework.
ResNets: for our experiments on ResNet [2] mod-
els (ResNet-56 on CIFAR-10 [4] and ResNet-18/34 on Ima-
geNet [1]), we take each residual block as one layer. It con-
tains a structure as Conv1-BN-ReLU-Conv2-BN where
Conv1 and Conv2 are the convolution layers, BN repre-
sents Batch Normalization [3], and ReLU is the ReLU acti-
vation function. For each block, given the predicted action
al for pruning it, we remove ⌊al × c⌋ output channels of
the Conv1 layer and the same number of input channels
of the Conv2 layer where c is the number of output/input
channels of Conv1/Conv2.
MobileNet-V2: for experiments using MobileNet-
V2, we take each inverted residual block [6] as one
layer for pruning. Each block has the structure with
Conv1-BN-ReLU6-DW Conv-BN-ReLU6-Conv2-BN
form where DW Conv is a depth-wise convolution
layer. Given the predicted action al, we remove ⌊al × c⌋
output channels of Conv1 and the same amount of
channels of DW Conv and input channels of Conv2.

In summary, our pruning scheme changes the inner num-
ber of channels in each block of a CNN and preserves its
number of input and output channels.

1.2. Calculating Action Bounds

We calculate al,min, al,max for the l-th layer based on
the total model’s FLOPs that we denote with FLOPsT
the number of FLOPs for the previous pruned layers

FLOPs1:l−1; the number of FLOPs for the next remaining
layers FLOPsl+1:L; FLOPs[l]; and FLOPsdesire. The for-
mulations are as follows:

al,min = 1− FLOPsdesire − FLOPs1:l−1

FLOPs[l]
(1)

al,max = 1− FLOPsdesire − FLOPs1:l−1 − FLOPsl+1:L

FLOPs[l]
(2)

In these equations, al,max prevents very high pruning
rates that even if all the next layers are kept intact, reach-
ing FLOPsdesire get infeasible. Similarly, al,min provides
the minimum pruning rate for the current layer given all the
next layers are pruned completely. We clip the predicted ac-
tion al to lie in [al,min, al,max] when pruning the l-th layer.

2. Experimental Settings
We provide more details of our experimental settings in the
following.
CIFAR-10: For CIFAR-10 experiments, we evaluate our
method on ResNet-56 [2] and MobileNet-V2 [6]. In our it-
erative pruning phase, we train both of the CNN models
for 200 epochs with the batch size of 128 using SGD with
momentum [7] of 0.9, weight decay of 1e−4, and starting
learning rate of 0.1. We decay the learning rate by 0.1 on
epochs 100 and 150. We take 5000 samples of the training
dataset as a subset for calculating the agent’s reward. For
all cases, we start to train the RL agent after 10 warmup
epochs of the model’s weights. Specifically, we collect ini-
tial data for the replay buffer of the RL agent from epochs
10 to 20. Then, for both ResNet-56 and MobileNet-V2, we
update the agent from epoch 20 until the epoch 90, and we
train only the model’s weights from epoch 90 to 200. After
the iterative stage, we prune the model’s architecture and
finetune it with the same settings for the base model.
ImageNet: We use ResNet-18, ResNet-34, and MobileNet-
V2 for ImageNet experiments. For the iterative training
stage of ResNets, we use SGD as the optimizer with the
momentum of 0.9, weight decay of 1e−4, and the start

1



learning rate of 0.1. We train ResNet models for 90 epochs,
and we decay the learning rate to 0.01 and 0.001 at epochs
30 and 60. For MobileNet-V2, we do so for 155 epochs
with a batch size of 256. We train the model’s weights
using SGD with the momentum of 0.9, weight decay of
1e−4, and starting learning rate of 0.05 decayed using co-
sine scheduling [5]. For all cases, we use 50000 samples of
the training dataset to evaluate rewards of the agent. Simi-
lar to CIFAR-10 experiments, we train the model’s weights
for 10 warmup epochs followed by 10 epochs for filling the
replay buffer of the RL agent. Then, for MobileNet-V2, we
train the agent’s policy from epochs 20 to 90, and we only
train the model’s weights from epoch 90 to 155. After the
pruning stage, we fine-tune the pruned model with the same
training parameters as the base model. For ResNet models,
we train the agent’s policy from epochs 20 to 70, and the
model’s weights are trained from epochs 70 to 90.
Ablation Experiments: we follow the same settings as
mentioned above for our ablation experiments in Tab. 3
of the paper. For the visualizations in Fig. 2, we use the
same settings except that we perform our iterative pruning
scheme for 90 epochs.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 1

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1

[3] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In International conference on machine learning,
pages 448–456. pmlr, 2015. 1

[4] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[5] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient
descent with warm restarts. In International Conference on
Learning Representations, 2017. 2

[6] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
4510–4520, 2018. 1

[7] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum in
deep learning. In International conference on machine learn-
ing, pages 1139–1147. PMLR, 2013. 1


	. Bounding our Agent's Actions
	. Implementation of our Agent's Actions
	. Calculating Action Bounds

	. Experimental Settings

