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7. Appendix
Here we report additional results of our algorithm for vary-
ing noise sources in Sec. 7.1, before discussing the proofs of
Theorem 1 and Theorem 2 in Sec. 7.2 and Sec. 7.3, as well
as the connection of our proposed line averaging scheme
with that of [12] in Sec. 7.6. Finally, we provide additional
visual insights into the manifolds spanned by events gener-
ated by a line. We show that these manifolds can be canon-
icalized, i.e. reduced to a small family of manifolds which
are highly interpretable (see Sec. 7.7).

7.1. Noise Sensitivity Analysis
In Fig. 5, we provide additional results of our method in
simulation, as we vary the number of events used by our
solver, and the magnitude of the various noise sources,
e.g. pixel noise, timestamp jitter, gyroscope noise. As ex-
pected, we see that all errors decrease as more events are
used, and errors increase as more noise is injected. Again,
the only noise source that cannot be completely eliminated
through addition of events is the gyroscope noise, which in-
troduces systematic errors. Experimentally, we found that
N = 10 events gives a good tradeoff between the speed of
the algorithm, and observed errors for all noise levels and
sources.

We also present additional results for differing noise
sources and magnitudes of our line averaging scheme
in Fig. 6, and analyse the resulting errors as the number
of used lines increases. Again we see that all errors tend to
zero as more lines are used, except for the gyroscope noise.

7.2. Proof of Theorem 1 on Degeneracies
For clarity, we restate Theorem 1 here:

Theorem 1: If rank(A) � 5, with A defined in Eq. 7,

the decomposition in Eqs. (8, 9, 10) always succeeds and

yields four distinct solutions. If rank(A) < 5 the solver

returns infinitely many solutions.

Proof: First assume rank(A) � 5. Then SVD returns
two distinct principle directions ±x̂. After decomposition,
Eq. 10 yields two more solutions, resulting in a total of four
distinct solutions. Now assume that the decomposition fails,
and this can happen for three reasons:

Failure to normalize in Eq. 8: Normalization may fail if
x̂4:6 has zero norm. However, this case is impossible for a
matrix A with rank � 5 for the following reason: Let B,C

be the three left and right columns of A (see Eq. 7). More-
over, note that C = TB, where T = diag(t01, t02, ..., t0N )

is a diagonal matrix, i.e. each row of B is a multiple of the
corresponding row in C.

If x̂4:6 has zero norm, x̂4:6 = 0. Next, let � be the
smallest singular value of A corresponding to the solution
x̂. Then
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The last three rows of the last equation are

B
|
TBx̂1:3 = 0 , (18)

and imply either that B|(TBx̂1:3) = 0, i.e. TBx̂1:3 is in
the left null-space of B, or Bx̂1:3 = 0, i.e. x̂1:3 is in the
right null-space of B. Both imply that rank(B) < 3. This
can only be the case if rank(A) = 5, following the as-
sumption. This implies that the smallest singular value is
� = 0. From the first three equations above, this implies
that Bx̂1:3 = 0. But then
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which implies that x̂ = [0| x|
1:3] is also in the null space of

A. We now find that both x̂1 = [0| x|
1:3] and x̂2 = [x|

1:3 0
|]

are in the null-space of A. These vectors are independent,
and render the rank of A < 5. This is a contradiction.

Failure to recover e
`
1: Recovering e

`
1 fails if the norm of

the cross product in Eq. 10 is 0. This implies that x̂4:6 =
�x̂1:3. For similar reasons as above, this implies that x̂1:3

solves both Bx = 0 and Cx = 0. This implies that � can
be freely varied, which would imply a two-dimensional null
space of A and a rank  4 which is again a contradiction.

Line passing through the origin at t
0 = 0: Note that in

such a case, e`3 would not be defined, and could cause issues
in solving. However, we can then use a different definition
of the line, with the direction d = e

`
1, and point on the line

P = e
`
1. The line moment then becomes m = P⇥ d = 0.

Inserting this into Eq. 2, transforms Eq. 6 into
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However, this would imply that the system in Eq. 7 has a
solution of the form x̂ = [x̂|

1:3 0
|]|, with x̂1:3 = e

`
3u

`
y �

e
`
2u

`
z . However, we proved in the last two cases that such a

solution form implies that the rank of A is smaller than 5.



Figure 5. Analysis of the number of used events over three types
of representative noise, i.e. pixel noise, timestamp jitter, and gyro-
scope noise.

Thus ensuring rank(A) � 5 is sufficient for discarding the
case where the line passes through the origin.

We conclude that if rank(A) � 5, the decomposi-
tion cannot fail, and always returns four distinct solutions.
Moreover, we conclude that a rank(A) < 5 yields solutions
x̂ from a two dimensional nullspace, which yields infinitely
many decompositions. ⌅

Figure 6. Analysis of the number of used lines over three types
of representative noise, i.e. pixel noise, timestamp jitter, and gyro-
scope noise.

7.3. Proof of Theorem 2 on Solution Multiplicity

For clarity, we restate Theorem 2 here:

Theorem 2: Given a solution S0 = {e`1, e`2, e`3, u`
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z}

to the incidence relation in Eq. 6, then
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are also solutions. These four solutions are visualized in

Fig. 2. For solutions S1 and S2 the closest point �e
`
3 on the

line is behind the camera, while for solutions S2 and S3 the

line direction e
`
1 is flipped, which represents an ambiguity

in the definition of direction of L.

Proof: We will only prove solutions S1 and S2 since S3

can be derived from a composition of S1 and S2. Inserting
S1 = {e`1
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into Eq. 6, we have
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7.4. Handling of Parallel Lines
As mentioned in the main text, parallel lines may cause dif-
ficulties in identifying the e

`
1 direction of the camera veloc-

ity. However, we can identify this case easily by checking
the rank of D. If it is lower than 2, we can discard the sam-
ple, and select a new one, or even use another RANSAC
loop to select pairs of lines until the rank of D is at least 2.
Let us now prove that parallel lines cause a rank deficiency
in D.

Proof: We will proceed in showing that if two lines are
parallel, the two corresponding rows r1 = u
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result in rank deficiency (see Eq. 13). Expanding v in the
two line coordinate frames yields
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with unknown scale factors �1,�2. For parallel lines e`11 =
e
`
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.
= e
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1 ⇥v in two ways (with two expan-

sions of v), we recover exactly the rows of D by
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It follows that r1 = �1
�2
r2, i.e. they are parallel. ⌅

7.5. Global Optimality of Rl and ul

As noted in the main text, while the SVD-based solver
which recovers x̂ from a set of incidence relations (Eq. 7)
finds a globally optimal solution x̂, it is not clear if the
decomposed solution Rl,ul is also optimal with respect to
the same objective. We prove this here.

Proof: We will prove this by way of contradiction. As-
sume given the SVD-based solution

x̂ = argmin
x

kAxk2 such that kxk2 = 1.

which is globally optimal, and decomposition Rl,ul with
x̂ = x(Rl,ul). Assume that there exists a different, more
optimal R

0
l,u

0
l with x̂

0 = x(R0
l,u

0
l). Then kAx̂

0k2 <

kAx̂k2 but this is impossible since it would imply that x̂0

is more optimal than x̂, but x̂ is already optimal. This im-
plies that the objective is already optimal in Rl,ul which
concludes the proof. ⌅

7.6. Connection between the Proposed Line Aver-
aging Scheme and [12]

The presented velocity averaging scheme is conceptually
simpler, and lends itself to geometric interpretation, un-
like the scheme in [12]. However, surprisingly these
schemes are actually equivalent, as will be demonstrated
next. In [12], Eq. 11 is used to set up a number of con-
straints
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Introducing unknowns v and {�i}, one for each line. Stack-
ing multiple of these equations results in a system
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This system is then multiplied from the left with E
|, and

the Shur complement trick is employed to eliminate the ex-
traneous variables �i, resulting in the equation Fv = 0,



where we use the following definitions:
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Inserting the equations, and simplifying we get
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The linear system thus becomes

Fv = 0 (37)

D̂
|
D̂v = 0 (38)

D̂
|(D̂v) = 0 (39)

if D̂| has full rank this implies that

D̂v = 0 (40)

Note that D̂ is identical to D in Eq. 13 up to normalization
of each velocity u

`
i separately. This normalization strategy

can be seamlessly integrated into the computation of D.
Moreover, computing D is much simpler than computing
F.

A B C
(i) event transformations

(ii) eventail in 2D

Figure 7. Events triggered by a line observed by an event cam-
era span a non-linear manifold called éventail (A). We show that
this manifold imposes a linear constraint on the partial camera
velocity and line parameters. With this insight, we can design a
linear solver for these quantities that is both fast and highly inter-
pretable, and characterize all manifolds (A) by transforming them
into canonical form via rotation compensation (B), and transfor-
mation into the line coordinate frame (C). In the ŷ`t-plane, these
manifolds trace a family of curves (ii), depending on the configu-
ration of u`

z and u`
y .

7.7. Canonicalization of the Manifold
The incidence relation in Eq. 6 yields a simple way to visu-
alize the manifold in its canonical form, and also shows the
dependence on the line velocity parameters u

`
y and u

`
z . To

reach this canonical form, we simply rotate the bearing vec-
tors of all events into the line-dependent coordinate frame
by replacing f

0 = R`f̂
0. We visualize this transformation

in Fig. 7, where we transition from raw events in normal-
ized coordinates (A), derotated events (B), and then events
in the line reference frame (C). This coordinate frame cor-
responds with that of a line that is parallel to the camera’s
x-axis. Doing this replacement yields
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where ex/y/z corresponds to the unit vectors in the camera
coordinate frame. Distributing and diving out the third com-
ponent of f̂ 0j , i.e. transitioning to normalized coordinates in



the new line reference frame, we reach
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where ŷ
` is the event y-coordinate in normalized, line co-

ordinates. This form describes the shape of the manifold in
two dimensions and is visualized in Fig. 7(ii) for varying u

`
y

and u
`
z .

From these visualization we make a number of obser-
vations: First, configurations with u

`
z = 0 trace straight

lines, corresponding to planar manifolds in the line coordi-
nate frame. Note, however, that in the derotated frame (B)
these may still be non-planar. Second, we see that u`

z < 0
induces a curvature in the manifold which increases as time
progresses. This configuration corresponds to a camera ap-
proaching the line, and thus the reduced distance increases
the apparent motion, which results in a larger slope. Fi-
nally, u`

z > 0 results in flattened curves. This corresponds
to cameras retracting from the line, which reduces the ap-
parent motion, and thus reduces the slope in the manifold.
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