BilevelPruning: Unified Dynamic and Static Channel Pruning for Convolutional
Neural Networks

Shangqgian Gao', Yanfu Zhang?, Feihu Huang', Heng Huang?*
! Electrical and Computer Engineering, University of Pittsburgh
2 Computer Science, College of William and Mary
3 Computer Science, University of Maryland College Park

Abstract

Most existing dynamic or runtime channel pruning meth-
ods have to store all weights to achieve efficient inference,
which brings extra storage costs. Static pruning methods
can reduce storage costs directly, but their performance is
limited by using a fixed sub-network to approximate the orig-
inal model. Most existing pruning works suffer from these
drawbacks because they were designed to only conduct ei-
ther static or dynamic pruning. In this paper, we propose a
novel method to solve both efficiency and storage challenges
via simultaneously conducting dynamic and static channel
pruning for convolutional neural networks. We propose a
new bi-level optimization based model to naturally integrate
the static and dynamic channel pruning. By doing so, our
method enjoys benefits from both sides, and the disadvan-
tages of dynamic and static pruning are reduced. After prun-
ing, we permanently remove redundant parameters and then
finetune the model with dynamic flexibility. Experimental
results on CIFAR-10 and ImageNet datasets suggest that our
method can achieve state-of-the-art performance compared
to existing dynamic and static channel pruning methods.

1. Introduction

Convolutional neural networks (CNNs) have recently
achieved great successes in many machine learning and com-
puter vision tasks [3, 37, 56, 57, 61]. Despite the remarkable
performance, the computational and storage costs of most
CNNss are quite expensive due to their complex architectures.
Such costs have become the major bottleneck to deploying
CNNss on portable devices with limited resources (e.g., mem-
ory, CPU, energy). To solve this problem, many researchers
focus on how to truncate the costs of deep models effectively.
These researches can be summarized into several directions,
such as weight pruning [24], weight quantization [6], struc-

*This work was partially supported by NSF IIS 2347592, 2347604,
2348159, 2348169, DBI 2405416, CCF 2348306, CNS 2347617.

tural pruning [39], matrix decomposition [10] and so on.
Among these approaches, channel pruning, which belongs to
structural pruning, is a promising way to effectively reduce
computational and storage costs since other methods often
require additional post-processing steps to acquire actual
compression. Thus, this work focuses on investigating the
channel pruning technique.

A series of channel pruning approaches [27, 50, 77] use
different criteria to evaluate the importance of each chan-
nel, and the redundant (less important) channels are pruned.
These approaches are also called static channel pruning. The
benefit of static channel pruning is that unessential chan-
nels are permanently removed, which results in savings of
both storage and computational costs. However, the model
capacity of static pruning is restricted by using a fixed sub-
network. Some more recent works [23, 45] try to select
important channels based on inputs and intermediate feature
maps at inference time, and they belong to dynamic chan-
nel pruning. Given different inputs, different sub-networks
are dynamically selected, which largely improves the model
capacity. Most existing dynamic pruning methods preserve
all channels to ensure the model has the largest capacity.
Compared to static pruning, dynamic pruning methods often
achieve better performance but at the cost of requiring extra
storage space.

As mentioned in recent storage efficient dynamic pruning
work [5], the large storage costs of most dynamic pruning
methods prohibit them from being deployed in resource-
limited portable devices. To save storage costs for dynamic
pruning, storage efficient pruning [5] heuristically combines
static and dynamic channel pruning by using reinforcement
learning. The final pruned model is obtained by combin-
ing the outputs of both static and dynamic pruning through
a hand-designed function. Channels with low importance
are permanently removed. Although this approach achieves
good results, there are several drawbacks. First, the sub-
networks from dynamic and static pruning in their method
are treated separately. In their work, static sub-networks are
not considered when conducting dynamic pruning and vice



versa, which generally hurts the performance. Moreover,
the learning of position and importance of remaining chan-
nels are also separated. Second, they use a hand-designed
function to fuse dynamic and static pruning results, leading
to sub-optimal performance due to the lack of the learning
process.

To tackle the aforementioned problems, we propose a
new model to integrate static and dynamic pruning. To
naturally form relationships between static and dynamic
sub-networks, we look for the best static sub-network by
evaluating dynamic sub-networks. We then integrate the
learning of static and dynamic sub-networks by using bi-
level optimization. Moreover, the static sub-network is never
evaluated directly, and it’s only implicitly trained through
dynamic sub-networks. Such a setup ensures that dynamic
sub-networks fully utilize their static counterpart. Our new
formulation integrates dynamic and static channel pruning,
leading to a better trade-off between storage costs and dy-
namic flexibility. Specifically, the limited model capacity
in static pruning is compensated by dynamic pruning, and
the extra storage costs in dynamic pruning are also reduced
by static pruning. As a result, our model enjoys the benefits
of both static and dynamic pruning, and their shortcomings
are compensated by each other. The final pruning results are
also learned in an end-to-end fashion without handcrafted
functions.

In our method, the selection of channels for both dy-
namic and static pruning is based on differentiable gates, and
they can be optimized through backpropagation. Under this
setting, we can apply parameter constraints on the static sub-
network and FLOPs constraints on dynamic sub-networks.
Previous dynamic pruning works [5, 45] often require hyper-
parameters to implicitly specify the computational budget
and/or the trade-off between dynamic and static pruning.
But our method can set them directly, which is an additional
benefit of our method.

In summary, the major contributions of our method can
be summarized as follows:

* We propose a novel channel pruning method, which unifies
both dynamic and static pruning. Dynamic and static
sub-networks are connected by evaluating the static sub-
network through dynamic sub-networks instead of training
them in parallel.

* We integrate static and dynamic pruning by formulating
them as a bi-level optimization problem. By doing so,
our method enjoys benefits from both static and dynamic
pruning. In addition, we present an efficient method for
optimizing the matrix-vector product in bi-level optimiza-
tion.

* The experimental results on CIFAR-10 and ImageNet
datasets suggest that our method achieves state-of-the-
art performance compared to existing dynamic and static
pruning methods.

2. Related Works
2.1. Regular Pruning

Weight pruning. Weight pruning aims to eliminate redun-
dant parameters. An early work [67] prunes model weights
based on minimum description length. Optimal brain dam-
age [38] and surgeon [25] utilize second-order information
to remove connections. The drawback is that the computa-
tion of second-order derivatives is expensive. More recently,
Han et al. [24] propose to prune weights based on their mag-
nitude. Magnitude pruning is very efficient, and the cost
of computing L, or Ly magnitude is negligible. Regular
network pruning approaches follow a three-stage pipeline:
training, pruning, and fine-tuning. Zhang et al. [49] raise
questions about such standard procedure and argue that the
sub-network architecture obtained by pruning is more valu-
able than the remaining weights. They also show that re-
training sub-networks from scratch is enough to recover the
performance. On the other hand, the lottery ticket hypothesis
(LTH) [15] shows that good sub-networks exist at the ini-
tialization stage. A series of works [52, 58] related to LTH
extend this work to larger datasets and more complicated
architectures. Another line of research [55, 76] shows that
training masks on top of untrained models can also lead
to ideal performance. The model after weight pruning has
much fewer parameters but it requires sparse matrix libraries
or specific hardware to achieve actual savings in storage and
computational costs.

Structural Pruning. Structural pruning tries to remove cer-
tain structures in a deep model, such as kernels, channels,
layers, and so on. In contrast to weight pruning, structural
pruning can accelerate inference speed and save storage
costs without additional effort. Filter pruning [39] tries to
prune filters from CNNs that are having small effects on the
outputs. Similar to magnitude pruning, the importance of
each filter is measured by L; or Ly norm of the filter, and
L1 norm performs better in their settings. Unlike filter prun-
ing, soft filter pruning [28] does not remove filters during
training, and they instead reset these filters and put them
into training again. Network slimming [47] uses L; sparsity
regularization on scaling factors of channels from batch nor-
malization layers, and channels with small scaling factors
are removed. Other related works [16-22, 33] also added
learnable parameters for different structures. Discrimination-
aware pruning [77] not only considers the norms of chan-
nels but also uses classification loss to identify unimportant
channels. Automatic model compression [29] applies rein-
forcement learning (RL) for structural pruning. RL is used
since it can better cooperate with the discrete nature of struc-
tural pruning. Greedy pruning [70] starts from an empty
model and adds connections that reduce the loss value most.
Static pruning methods directly reduce storage costs, but
the pruned model is fixed leading to limited model capacity.



Alongside progress in vision tasks, Natural Language Pro-
cessing (NLP) has significantly advanced, demonstrated by
key studies [62, 68, 71-75]. Concurrently, structure pruning
is enhancing large model efficiency [66].

2.2. Dynamic Pruning

Regular pruning methods are designed to find a fixed sub-
network for all inputs. On the other hand, dynamic pruning
aims to provide different sub-networks for different inputs,
which increases the model capacity given the same inference
budget. Runtime neural pruning [42] treats dynamic pruning
for different layers as a Markov decision process and uses
reinforcement learning for training. SkipNet [65] uses a
gating module to skip convolution blocks based on previous
feature maps dynamically. The dynamic skipping problem is
formulated as a sequential decision-making problem, which
is jointly solved by reinforcement and supervised learning.
Adaptive neural networks [4] adaptively select the compo-
nents of a deep model based on the input examples. They
also introduce an early exit mechanism to further reduce com-
putational costs. In feature boosting and suppression [23],
they propose to skip unimportant input and output channels
dynamically. They use Lasso regularization to introduce
sparsity on the runtime channel importance. Besides prun-
ing, some works utilize the power of dynamic computation
to improve the design of CNNs. CondConv [69] replace tra-
ditional convolutions with learned specialized convolutional
kernels for each input. Dynamic convolution [7] applies
input-dependent attention on multiple convolution kernels,
which drastically improves the model capacity. Most afore-
mentioned works need to keep the full model to achieve the
best performance. To reduce storage costs, storage efficient
dynamic pruning [5] introduces static pruning along with
dynamic pruning to reduce storage costs.

3. Proposed Method
3.1. Notations

To better illustrate our method, we first introduce some nec-
essary notations. In a CNN, the feature map of i-th layer
can be represented by F; € REXCixWixHi 'y — 1 [
where B is the mini-batch size, C; is the number of channels,
W, and H; are the width and height of the current feature
map, L is the number of layers. © is the element-wise prod-
uct. We use 0 (z) = 72== to represent the sigmoid function.
| -] is used to represent rounding to the nearest integer.

>

3.2. Static and Dynamic Settings

For static pruning, we can use a 0-1 vector to indicate
whether to prune a channel or not. To produce such vec-
tors, we use the following function:

gs = |vs|, vs = o ((0s +p)/7), (D

where g, € RC is the static pruning vector, ju ~
Gumbel(0, 1), 7 is the temperature hyper-parameter, and
0, € R are learnable parameters for static pruning. v, is a
continuous vector, we further round it to its nearest neighbor
gs.- The rounding function is not differentiable, we solve
this problem by using the straight-through estimator [2] to
calculate gradients. Now we have the binary vector g, for
static pruning. The generation of g, can be seen as using the
straight-through Gumbel-sigmoid [34] trick to approximate
Bernoulli distribution.

We can use similar formulations for dynamic pruning and
consider feature maps from the ¢ — 1th layer. The detailed
formulation can be written as:

ga = val, va = o((h(Fi—1;0q) + p)/7), 2)

where g; € RP*C is the dynamic pruning vector, and
h(+;04) is a routing function parameterized by 6, to dynami-
cally select channels, the rest settings are the same as static
pruning. The routing function h(+;64) is composed with
global average pooling followed by squeeze and excitation
(SE) [31], which is suggested by FBS [23]. By using SE,
we can save parameters when some layers in a model is too
wide (like later layers of MobileNet-V2).

After we have g,, the resulting feature map obtained by
static pruning can be represented as:

Fi=9sOF; 3)

where F; is the pruned feature map by applying g,, and g,
is first expanded to have the same dimension of F;. After
having Fi, we can regard it as the new base feature map, and
apply dynamic pruning on it:

Fi=ga0F. €]

where F; is the dynamically pruned feature map, g4 is also
first expanded to have the same dimension of F; and con-
duct element-wise product. We can then remove channels
from W, based on .7:"1 One can also use a more sophisti-
cated method to specify the relationships between static and
dynamic pruning. For example, one can directly multiply
gs along with the output dimension of the weight matrix
6, of the routing function. However, we found that such
modifications do not provide any benefits.

3.3. Unified Dynamic and Static Pruning

Since all operations of static and dynamic pruning are dif-
ferentiable, we can formulate the static pruning problem as
follows:

rrel)in L(f(2;05,04q),y) + ARp(Tp(0s),ppTy),  (5)

s

where O is the Acollection of all learnable parameters 6, for
static pruning, T}, is the number of all prunable parameters,
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Figure 1. The flowchart of the proposed method. In the figure, we first conduct static pruning followed by dynamic pruning. Instead of
naively combining static pruning and dynamic pruning, we formulate the pruning problem as a bi-level optimization problem to unify static
and dynamic pruning. The whole process is differentiable, which allows efficient gradient based optimization.

T,(O5) is the remained number of parameters decided by
the static sub-network, R, is the regularization term to re-
duce the number of parameters to a predefined threshold
Pp» T,y are input samples and their labels, f(-; 0, ©4) is
a sub-network from the whole network and it is parame-
terized by O, and Oy, and L is the cross-entropy loss for
classification. We omit the model weights W, since we fix
Win f(-;©4,04) during the pruning stage. Similarly, the
dynamic pruning problem can be defined as:

Héidn [’(f(my ®Sa ®d)7 y)+)‘Rr(Tr(®d);prTr)+'7Rd(vd)a
(6)

where © is the collection of all 6, T, is the total prunable
FLOPs of the model, T,.(04) is the average FLOPs of B
dynamic sub-networks, R, is the regularization term to push
average FLOPs of dynamic sub-networks to the correspond-
ing threshold p,., 7y is the hyper-parameter for R4, and R4 is
a regularization term to prevent dynamic sub-networks from
collapsing to a single trivial solution. We define R;(v,) as
follows:

L
Ra(va) = 7 > llvi— villz ", )
=1

where v} is the continuous dynamic vector of ith layer, and
v, = 4 >_ vl is the average of dynamic vectors from the
current layer. We use continuous v}; instead of discrete g;.
Because the variance of g’ could be very small for early
layers (also pointed out in [69]), which results in instability
and difficulty when optimizing Eq. 7.

To reduce the number of hyper-parameters, we use the
same A for both R, and R,,. Given the objective function in
Eq. 4 and Eq. 5, we can see that the static sub-network is not
directly evaluated, and it is used as the new backbone model
for dynamic pruning.

We have the objective functions to conduct static and
dynamic pruning; a natural question is how to train them

together? We can simply put Eq. 5 and Eq. 6 together and
optimize them using gradient descent. However, such a
process will make the training of static and dynamic pruning
interfere with each other, which will hurt the pruning result
(shown in supplementary materials). Alternatively, we can
optimize Eq. 5 and Eq. 6 iteratively, but doing so can not
integrate static and dynamic pruning, and training of static
and dynamic pruning are separated.

To unify the training of dynamic and static sub-networks,
we can consider the following bi-level optimization [8] prob-
lem:

min ﬁ(f(i[, @:7 @d)a y) + )\RT‘ (Tr(@d)vprfr) + ’YRd(Ud)

[SF)

s.t. ©F = argming  L(f(2;05,04),y) + ARp(T5(0s),ppT}),

®)

where the outer problem is to find good dynamic sub-
networks based on the optimal static sub-network, and the
inner problem is getting the optimal static sub-network. The
formulation of the problem in Eq. 8 also appeared in gradient-
based hyperparameter optimization [1, 14] and differentiable
neural architecture search [44].

The inner problem in Eq. 8 is not easy to solve since
how to generate dynamic sub-networks without learning is
unclear. Naive random sampling of dynamic sub-networks
only produces trivial results. We then approximate ©% by
training one step, and it has been proven effective in pre-
vious works [1, 44]. Multi-step approximation can also be
used, but it will dramatically increase the computational
costs since one has to perform backpropagation through mul-
tiple time steps. As a result, we chose to use the one-step
approximation. To simplify notations, we use £(0,,04) =
L(f(x;04,04),y) for the following derivations. Let us first
define the update rule v for ©,: ©, = u(O,,7), and 7 is the
learning rate. Take SGD as an example, the update rule of O
is O, = u(04,n) = O, — n(Ve.L(Os,04) + A\Ve,R,).



We then approximate ©% with @;, and the gradient with
respect to O is:

Vo, £(07,04) + \Ve,R, + 1V, Ra
~ Ve,L(0s —1(Ve,L(Os,04) + AVe,R;), Oa)
+ AVeo, R +vVe, R4
= V@dﬁ(@;, O4) — nvéd,esﬁ(@s, Gd)ve);ﬁ(@;, O4)
+ AVeo,R, +7Ve,Ra.
&)

where the last equality is obtained by applying the chain
rule. Note that, we use @; to approximate ©F, and the
second line of Eq. 9 is an approximated solution instead of an
analytical solution. At first glance, the final gradient contains
a costly matrix-vector product. However, we will show that
the second-order derivative is just the multiplication of two
first-order terms. Let’s take a specific layer ¢ as an example,
we first rearrange Eq. 3 and Eq. 4: Fi = g¢ ® F;, and

g' =g’ ® g’ we have:
Vi 0 £(0%,05) =V: (Vi L(65,05)V g 9")
=Voi (Vi L85, 02)((Vo: 95) © g3))

=V L(05,02)(Vo: 9% - Vgi,90)-
(10)

To simplify derivation, 93 is flattened as a vector, and we
omit all transpose notations. The result of Eq. 10 indicates
that the second-order term is just the multiplication of two
Jacobians matrices followed by V ;i £(0%, 67), which is more
efficient than using finite difference approximation for the
matrix-vector product [44, 60]. The calculation of the Jaco-
bians matrix is also simple since the computation of g% and
g’, only includes simple operations like matrix multiplica-
tions and element-wise functions. With Eq. 9 and Eq, 10, we
always update O, by taking O, into consideration, which is
ignored in storage efficient pruning [5]. The calculation of
the Jacobians matrix is listed in the supplementary materi-
als. In practice, we use the Adam optimizer [35] instead of
SGD. The derivation of gradients w.r.t ©, given the Adam
optimizer is also provided in the supplementary materials.

3.4. The Overall Algorithm

We follow the three-stage procedure of regular pruning meth-
ods: training, pruning, and fine-tuning. During pruning, O,
and © are learned; pruned ©4 and VWV are trained during fine-
tuning. After we obtain static and dynamic sub-networks
by solving the problem in Eq. 8, we permanently remove
channels with 0 in g,, which also saves costs for fine-tuning.
As a result, only a static sub-network that is important to
dynamic sub-networks is persevered for finetuning. The rest
parts of the model are removed to achieve the goal of saving
memory costs. The corresponding channels in the dynamic

Algorithm 1: Unified Dynamic and Static Channel
Pruning

Input: dataset for pruning: Dppne; remained rate of
FLOPs and parameters: p, and p,,; hyper-parameter:
A and +; training epochs for pruning: Eprpe;
pre-trained CNN: f.

Initialization: initialize ©4 randomly; initialize O,
uniformly; freeze W in f.

for ¢ := 1 to Ejyp, do

for a mini-batch (z,y) in Dpype do
1. produce static and dynamic vectors: g5 and

ga- (Eq. 1 and 2)
2. calculate gradients w.r.t ©4 from Eq. 5.
3. update ©4 by Adam optimizer.
4. calculate gradients w.r.t ©4 (Eq. 9 and
Eq. 10).
5. update ©, by Adam optimizer.

end

end
Get f/ by pruning f based on g,.
Return [’ for fine-tuning.

routing function A(-) are also removed. The fine-tuning loss
can be written as:

(gnlil/l\} [/(f/(.lf, ®d7 W)7 y)+ART(Tr(®d)apTTT)+’7Rd(Ud)7
2d
(11)

where f’ is the pruned model with around ppfp parame-
ters. Here, we abuse notations ©, and W to represent
weights after static pruning, and they are different from
the original weights. We only modify the feature maps
during fine-tuning, which takes advantage of mini-batch
training. During the evaluation, we dynamically prune the
channels. For both pruning and fine-tuning, we choose
Ry (z,y) = Ry(x,y) = log(max(z,y)/y). Typically, reg-
ular regression loss functions, like MAE and MSE, can be
used for 12, and R, but they can hardly achieve target val-
ues for some architectures like MobileNet-V2. We insert g,
and g, after the Conv-Bn-ReLU block and before the next
convolution layer for pruning, which can accurately reflect
the pruned model. The overall algorithm of our method is
provided in Alg. 1. The whole process of our method is
summarized in Fig. 1.

4. Experiments
4.1. Settings

In the experiment section, we call our method UDSP
(Unified Dynamic and Static channel Pruning). We use
CIFAR-10 [36] and ImageNet [9] to verify the performance
of our method, as most previous pruning works use these
datasets.



Method Architectures | Dynamic | Base Acc Acc A-Acc | |FLOPs | | #Params
FBS [23] v 91.37% | 89.88% | -1.49% 74.6% -11.0%
SEP-A [5] CifarNet v 92.07% | 91.23% | -0.84% 74.5% 22.0%
SEP-B [5] v 92.07% | 91.42% | -0.65% 74.5% -31.0%

UDSP (ours) v 92.36% | 91.89% | -047% | 75.1% 20.1%
AMC [29] X 92.80% | 91.90% | -0.90% 50.0% -
FPGM [30] X 93.59% | 92.93% | -0.66% | 52.6% -
HRank [43] ResNet-56 X 93.26% | 93.17% | -0.21% 50.6% 42.4%
DSA [53] X 93.13% | 9291% | -0.22% 52.2% -

SEP [5] v 93.12% | 93.44% | +0.32% | 50.0% 19.8%

UDSP (ours) v 93.12% | 93.78% | +0.66% | 50.1% 20.0%

Table 1. Comparison of the accuracy changes (A-Acc), reduction in FLOPs, and the number of parameters of various channel pruning

algorithms on CIFAR-10. ‘+/-* of A-Acc indicates increase/decrease compared to baselines.

parameters.

On CIFAR-10, we use CifarNet following several dy-
namic pruning works [5, 23]. Besides CifarNet, we also test
our method on ResNet-56. For ImageNet, we evaluate our
method on ResNets [26] and MobileNet-V2 [59]. p,, and p,.
are used to decide how much FLOPs and parameters to be
pruned. Detailed settings of p, and p, are provided in the
supplementary materials. A and v in Eq. 5 and Eq. 6 are set
to 2.0 and 0.1 separately for all models and datasets. 7 in
Eq. I and Eq. 2 is set to 0.4. Other implementation details
are given in the supplementary materials.

4.2. CIFAR-10 Results

We present CIFAR-10 results in Tab. 1. For CifarNet, all
comparison methods are dynamic. From Tab. 1, we can see
that our method can outperform other comparison methods
with similar pruned FLOPs. Compared to FBS, our method
saves 27.9% of parameters (79.9% vs. 111% #Params com-
pared to the original model) while achieving 1.02% improve-
ments with A-Acc. SEP-A has similar parameter savings as
our method, but the A-Acc is 0.37% lower than our method.
SEP-B keeps all channels, and our method still outperforms
it by 0.18% with A-Acc. Moreover, our method only uses
60.9% parameters of SEP-B.

We compare our method with both static and dynamic
pruning methods on ResNet-56. All comparison methods re-
duce around 50% FLOPs. Our approach has similar pruning
rates of FLOPs and parameters as SEP, but our method per-
forms better than SEP by 0.34%. HRank achieves the best
performance among static pruning methods. Static pruning
methods prune more parameters compared to dynamic prun-
ing methods, but the performance of our method is 0.87%
higher than HRank in terms of A-Acc. In summary, our
method achieves a better trade-off between storage costs and
performance than SEP [5].

4.3. ImageNet Results

On the ImageNet dataset, we use ResNet-18, ResNet-34,
ResNet-50, and MobileNet-V2 to evaluate the performance
of different methods. All results are shown in Tab. 2. The

3K

-’ in ‘) #Params’ indicates increase of

results of other comparison baselines are directly adapted
from their original paper following the common practice.

ResNet-18. For static pruning methods, DSA [53]
achieves the best performance. The A Top-1 accuracy of
our method is 0.83% higher than DSA, and our method
prunes 10.2% more FLOPs. This result suggests that dy-
namic pruning still has advantages when the model capacity
is reduced to some extent. FBS and CGNN use additional
parameters for dynamic pruning. Our method outperforms
FBS and CGNN by 2.26% and 0.79% in terms of A Top-1
accuracy separately. In addition, our method prunes 11.5%
more FLOPs than CGNN and saves 20% of parameters. Fi-
nally, our method is better than SEP by 0.75% in terms of
A Top-1 accuracy, while both methods prune similar FLOPs
and parameters.

ResNet-34. IE [51] performs better than other static
pruning methods, but it prunes less FLOPs and parameters.
Our method has similar parameters and performance as IE,
but we can prune 27.7% more FLOPs than IE. Our method
saves 20% parameters and performs better than CGNN by
0.71% in terms of A Top-1 accuracy, and both methods
prune similar FLOPs.

ResNet-50. For ResNet-50, We compare several recent
state-of-the-art pruning methods. Our method outperforms
ResRe by 0.54% and 0.50% in terms of Top-1 and A Top-1
accuracy. The gap between other methods and our method is
more obvious. 3DP explores pruning in 3 dimensions, which
allows a more flexible trade-off. Our method is better than
3DP by 0.61% regarding Top-1 accuracy, indicating that
our method can achieve similar flexibility. In addition, our
method prunes most FLOPs, and we can also reduce storage
costs to some extent (25.0% reduction). DepGrah and DTP
are recently proposed static pruning methods, our UDSP still
has a clear advantage when it comes to these baselines.

MobileNet-V2. AMC, MetaPruning and MobileNet-V2
0.75 all remove around 30% FLOPs. MetaPruning achieves
the lowest accuracy lost. Our method prunes around 6%
more FLOPs than MetaPruning, and performs better (0.52%
and 0.44% higher with Top-1 and A Top-1 accuracy). Our



Method Architectures | Dynamic | Pruned Top-1 | A Top-1 | J FLOPs | | #Params
AMC [29] X 66.63% -3.13% 50.0% 24.0%
FPGM [30] X 68.41% -1.87% 41.5% 28.0%
DSA [53] X 68.61% -1.11% 40.0% -

FBS [23] ResNet-18 v 68.17% -2.54% 49.5% -12.0%
CGNN [32] v 67.95% -1.07% 38.7% -

SEP [5] v 68.73% -1.03% 48.5% 19.0%
FTWT [12] v 67.49% -2.27% 51.6% -

UDSP (ours) v 69.48 % -0.28% 50.2% 20.0%

SFP [28] X 71.84% -2.09% 41.1% -
FPGM [30] X 72.63% -1.29% 41.5% 28.9%

IE [51] X 72.83% -0.48% 22.3% 21.1%
CGNN [32] ResNet-34 v 72.40% | -1.10% | 50.4% -
FTWT [12] v 72.17% -1.13% 47.4% -

UDSP (ours) v 72.91% -0.39% 50.0% 20.0%
SCOP [63] X 75.26% -0.89% 54.6% 51.8%

GFP [46] X 76.42% -0.37% 51.0% 55.8%

3DP [64] X 75.90% -0.25% 53.0% 50.0%
ResRe [11] ResNet-50 X 75.97% -0.12% 56.1% -

DepGraph [13] X 75.97% -0.12% | 51.18% -
DTP [41] X 75.55% -0.58% 56.7% -
UDSP (ours) v 76.51% +0.38% | 58.4% 25.0%
MobileNet-V2 0.75 [59] X 69.80% -2.00% 30.0% 24.8%
AMC [29] X 70.80% -1.10% 30.0% 17.2%
MetaPruning [48] MobileNet-V2 X 71.20% -0.60% 30.9% -
GSS [70] X 71.20% -0.80% 36.0% 22.9%
UDSP (ours) v 71.72% -0.16% 36.6% 15.3%

Table 2. Comparison of the accuracy changes (A Top-1), reduction in FLOPs, and the number of parameters of various channel pruning

algorithms on ImageNet.
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CIFAR-10.
Bi-level Acc A-Acc | | FLOPs | | #Params
X 93.55% | +0.43% | 50.0% 20.3%
v 93.78% | +0.66% | 50.1% 20.0%

Table 3. Comparisons between different pruning settings of our
algorithm on ResNet-56 for the CIFAR-10 dataset.

Settings | Base Acc Acc A-Acc | |FLOPs | | #Params

UDSP' | 93.12% | 93.32% | +0.20% | 50.0% | 40.0%

UDSP? | 93.12% | 93.64% | +0.52% | 50.1% 30.0%
UDSP? | 93.12% | 93.78% | +0.66% | 50.1% 20.0%

Table 4. Comparisons given different pruning rates for #Params
with ResNet-56 on CIFAR-10.

method and GSS prune a similar amount of FLOPs, and
the A Top-1 accuracy of our method is higher than GSS by

0.64%. In addition to FLOPs reduction, our method can also
remove around 15.3% of parameters.

In summary, our method provides a larger model capacity
compared to static pruning methods, and the storage costs
are reduced compared to dynamic pruning methods. More-
over, our method achieves a better trade-off between storage
costs and performance than SEP, indicating that integrating
dynamic and static pruning is important for pruning.

4.4. Analysis of Different Settings

To understand different design choices and hyper-parameter
settings, we provide additional analysis in this section. In
Fig. 2(a,b), we plot the loss value and model accuracy given
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Figure 4. The resulting architectures of ResNet-56 and CifarNet on
CIFAR-10 with our method. We plot the probability of using each
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Figure 5. ResNet-50 on ImageNet dataset.

different pruning settings. We can see that bi-level optimiza-
tion outperforms iterative training with both accuracy and
loss values, which suggests that integrating dynamic and
static pruning is beneficial. We also show the difference
between the finetuned model in Tab. 3, and we can draw
similar conclusions.

In Fig. 2(c), we provide the accuracy after pruning (before
fine-tuning) given different . A too-large ~ usually hurts
the performance, and ~ around 0.1 provides relatively good
results.

In Fig. 2(d), we fix p,. = 0.5 and plot the accuracy after
pruning given different percentages of remaining parameters
(pp). We can see that the performance does not decrease
a lot when we keep more than 75% of parameters. We
further present results when pruning more parameters af-

ter finetuning in Tab 4. When pruning 30% of parameters
(UDSP?), the performance of our method does not decrease
too much. However, there is a large performance drop when
pruning 40% of parameters. Under this setting (UDSP?), the
parameter reduction of our method is similar to the static
pruned model from HRank, and the dynamic flexibility is
largely restricted. These observations suggest that, under the
same FLOPs pruning rate, our method can maintain a good
trade-off between dynamic flexibility and storage costs until
the pruning rate for parameters is similar to static pruning
methods.

In Fig. 3, we plot the value of regularization losses and
model accuracy given different choices of \. From the figure,
it can be seen that our method is robust to different choices
of A\. A lower ) can lead to a little better final performance,
but the difference is small.

In Fig. 4, we plot the final architectures of ResNet-56
and CifarNet for our method. Our method tends to preserve
more channels when the width of the original model changes.
Later layers often have more dynamic flexibility, probably
because they are less penalized by the FLOPs constraint R,
This figure also suggests that our method does not collapse
into a single static solution.

We plot the Top-1 accuracy vs. FLOPs in Fig. 5. Besides
baselines introduced in Tab. 2, we also include Random
Pruning [40] in the figure. In the figure, it is clear that our
method has the best FLOPs vs. Accuracy trade-off.

5. Conclusion

In this paper, we study the problem of how to integrate dy-
namic and static pruning. We explicitly formulate the static
and dynamic pruning problems as a new bi-level optimiza-
tion task such that two types of models can complement each
other. We further improve the efficiency of the cost matrix-
vector product in the bi-level pruning problem. The superior
performance of our method on CIFAR-10 and ImageNet
datasets suggests that our method is a promising solution for
integrating dynamic and static channel pruning.
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BilevelPruning: Unified Dynamic and Static Channel Pruning for Convolutional
Neural Networks

Supplementary Material

A. Implementation Details

We train ResNet-56 and CifarNet on CIFAR-10 from scratch
following pytorch [54] examples. For ImageNet models, we
can directly use pre-trained models from Pytorch, since our
method is able to prune any pre-trained models.

To improve efficiency, we only use part of the dataset
for pruning. We randomly sample 5,000 and 50,000 im-
ages from CIFAR-10 and ImageNet as Dpye in Alg. 1.
Adam [35] optimizer is used to train both ©4 and ©,4, and
the training lasts for 200 epochs with mini-batchsize 256.
The start learning rate and weight decay are set to 1073
and 10~%, and the learning rate is decayed to 10~* at epoch
160. We initialize all ©4 to 3.0 to ensure most initial g, are
1.0, which means that static pruning starts from the whole
network.

On CIFAR-10, we finetune the model for 160 epochs by
using the Adam optimizer with a start learning rate 1073,
The learning rate is changed to 10~* at epoch 80, and it is
further reduced to 10~ at epoch 120. Following storage
efficient pruning [5], we continue to use the Adam optimizer
on ImageNet models. After pruning, we finetune ResNet
models for 100 epochs with a start learning rate 1072, The
learning rate is then decayed to 10~% at epoch 30, and it is
further decayed to 10~ and 10~ at epoch 60 and epoch
90. For MobileNet-V2, we also use the Adam optimizer and
finetune it for 100 epochs. We use the cos-annealing learning
rate scheduler following their original setting [59]. The
mini-batch size and weight decay are 256 and 10~* for both
CIFAR-10 and ImageNet models. All codes are implemented
with pytorch [54]. The experiments are conducted on a
machine with 4 Nvidia Tesla P40 GPUs.

B. Visualization of the Resulting Architectures

In Fig. 6, we further plot the final architectures of ResNet-56
and CifarNet for our method and SEP. For both CifarNet
and ResNet-56, SEP does not fully utilize the capacity of
early layers, especially on ResNet-56. These results justify
why our method can outperform SEP. This also suggests
that a more sophisticated interaction (bi-level optimization)
between static and dynamic sub-networks is crucial to achiev-
ing good results.

C. Negative Impacts of Joint Training

In section 3.3 of the main text, we argue that joint training
of dynamic and static pruning will interfere with each other.
In Fig. 7, we present the comparison results between joint

training and iterative training. We can see that joint training
lacks exploration during learning and its performance is
lower than the iterative baseline.

D. Derivation of Gradients w.r.t ©, from Adam

Algorithm 2: Update O, with Adam

Input: 1, 51, 82 € (0,1], € > 0: learning rate and
decay rate for ADAM.
Initialize mg, ng,t =0
Update rule at step ¢:
my =
Bimy_1 + (1 — ﬂl)(V@sﬁ(@s, @d) + )\V@S'Rp)
ny =
Bang_1 + (1 — ﬂg)(V@Sﬁ(@S7 @d) + )‘v@st)2
1y =my/(1— BY)
iy =ne/(1 - B3)
Oy = u(Os,n) = O — i/ (Vi +€)

In Eq. 9 of our paper, we provide the gradients w.r.t O4
when updating ©, with SGD, since it’s simple and easy to
follow. In practice, SGD can hardly achieve satisfactory
performance when dealing with discrete values. As a result,
we use Adam to update ©4. As a result, we will show how to
calculate the gradients of ©, under the Adam optimizer. We
show the update rule of ©; in Al. 2, and we omit timestep
t of O, to simplify notations. We focus on the first term in
Eq. 9, and the gradient w.r.t O is:

v®d£(®:7 @d)
~Vo,L(0, — mine/ (Vi + €), ©4)

B
=Ve,L(0),,04) — nVZ L(Og,04)((————
O4 ( s d) n 04,04 ( d)((Q(\/ﬁ»t+€)
_ Bgmt(V@SﬁA(@s, @dz —|—2)\V95Rp) )V@gﬁ(@ls, @d))7
2(fy + ev/fy)
(12)
where 3 = %, Bo = 1:22 The derivation in Eq. 12 is a

little bit complicated compared to the SGD update, but it is
still the result of the chain rule.

E. Calculation of Jacobian Matrix

Recall that we need to calculate Vi g7, - 7 g4, in Eq. 10.

Let us first focus on the element-wise function gi = |v]



(b) CifarNet (Ours)

(a) learNet (SEP)

(d) ResNet-56 (Ours)

(c) ResNet-56 (SEP)

Figure 6. The resulting architectures of ResNet-56 and CifarNet on CIFAR-10 with our method and SEP. We plot the probability of using
each channel, and the probability is calculated on the whole test dataset. Channels with dashed lines are permanently removed.
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Figure 7. (a,b): Comparison of loss and accuracy given joint and
iterative training. Mean and variance are provided by running the
experiment 3 times.

and vl = o((0% + p)/7), and we have:
Veigh =IVgivl = Vpiul, (13)

where the identity matrix I comes from using straight-
through estimator, Vi v} = diag(a), and a} = Lo ((0% +
w)/7T) (1 = o (05 + p)/7)).

To simplify derivation, we assume linear transforma-
tion is used in the routing function A(-) instead of SE, and
i € RE>*Ci-1, Under this setting, we have h(F;_1;04) =
04Fi_1,and F;_; = GAP(F;_1) is the result of global aver-
age pooling (GAP). We also let z; = h(F;_1;0,) Similarly,
V% g}, can be calculated as follows:

Vi ga = V2,0V gi 2, (14)

where V0! = diag(a}), and a}, = Lo ((z; + p)/7)(1 —

o((zi + p)/7)). The last term Vyiz; € RO Cim
(mini-batch dimension is omitted) is the Jacobin matrix
of matrix-vector product w.t.r to 6. (Voizi) 0 =
[0+ (Fiz1)k---0]", and (F;_1)x is at the jth element
of the vector. The above result is obtained by applying chain
rule on the matrix-vector product. As a result, the calculation
of Ve; 2 is just rearranging F;__1 to the right position, which
is not expansive.

RCixCiCi-1 and we have

Vi g € RE*Ci. The computation of (Vg: g% - Vi g}y) €
RCixCiCi_l xC.

We first vectorize V% g, €

i can be written as:

(Veggi‘vajigfl)[p,:,] ((Vmgs) (Vefgd)p, )T, (15)

Dataset Architecture | p. | p,
ResNet-56 0.50 | 0.80
. CifarNet 0.75 | 0.50
ResNet-18 0.45 | 0.75
I Net ResNet-34 0.45 | 0.75
MAgeRet | ResNet-50 | 0.36 | 0.70
MobileNet-V2 | 0.60 | 0.80

Table 5. Choice of p,- and p,.

F. Selections of p, and p,

We present the choices of p, and p,, in Tab. 5. The choices
of p, and p,, are not hard to calculate. Let 72" be the number
of all parameters given a CNN, and T is the total number of
prunable parameters. If we want to remove 20% of parame-
ters, then p, 7, = 0.87%. Finally, p, = 0.87%"/T},. Similar
calculations can be apphed on p,.
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