
Appendix for Bootstrapping SparseFormers from Vision Foundation Models

A.1. More Ablations on Bootstrapping Settings
In Section 3, We have proposed to truncate the leading, tune
the middle, and freeze the ending pre-trained transformer
blocks to further reduce the compute and preserve the output
embedding space of the foundation transformer to bootstrap
from. Here, we investigate the effect of this bootstrapping
paradigm in Table 1.

model
#truncate

blocks
#tunable
blocks

IN-1K
top-1 acc. FLOPs #Params

SF-BAugReg, default 4 4 of 8 82.5 3.8G 86M
SF-BAugReg, all frozen 4 0 of 8 81.8 3.8G 86M
SF-BAugReg, all tunable 4 8 of 8 82.4 3.8G 86M
SF-BAugReg, w/o truncation 0 4 of 12 82.7 5.2G 92M
SF-LAugReg, default 8 8 of 16 84.5 11.4G 213M
SF-LAugReg, all frozen 8 0 of 16 84.0 11.4G 213M
SF-LAugReg, all tunable 8 16 of 16 84.4 11.4G 213M
SF-LAugReg, w/o truncation 0 8 of 24 84.3 16.4G 314M
SF-LAugReg, w/o truncation 0 16 of 24 84.7 16.4G 314M

Table 1. Ablation on truncating, tuning, and freezing settings.

As shown in the table, bootstrapping SparseFormers
without tuning pre-trained transformer blocks (“all frozen”)
leads to inferior results compared to ones that do tune. This
is expected since frozen pre-trained transformer blocks can
not adapt to the output of the focusing transformer during
the bootstrapping procedure. However, going to the oppo-
site extreme of making all pre-trained blocks tunable (“all
tunable”) can also be lagging. This may be because the
frozen classifier relies on the structure of the well-preserved
output embedding space in our bootstrapping setting. We
believe that this is also true for vision language models. Be-
sides that, we observe that bootstrapping without truncating
leading blocks can be very unstable, and lead to different
effects on SF-BAugReg and SF-LAugReg but with much more
FLOPs and parameters. Therefore, we choose our truncat-
ing the leading, tuning the middle, and freezing the ending
paradigm as our bootstrapping design due to the reduced
computation and minimal tunable parameters.

A.2. Experiment Settings in Details
We here describe more experiment details in the bootstrap-
ping procedure. The learning rate for tuning pre-trained
transformer blocks is set to 0.1× that of the focusing trans-
former to make the training more stable after the warm-
up. The focusing transformer in our designed SparseFormer
variant performs the feature sampling first, then self atten-
tion between tokens, the feed-forward network, and then the

RoI adjustment for each iteration, in contrast to the origi-
nal SparseFormer which the self attention is performed first
and the feature sampling then. We use this reversed order
to prioritize the self-attention interaction between different
tokens with sampled features. We use two-layered MLP to
produce RoI adjusting deltas in the focusing transformer.

Different from the original SparseFormers without posi-
tional information into latent tokens, we inject RoI-based
position encoding into tokens after every feature sampling
operation in the focusing transformer to align with typi-
cal vision transformers. Our adopted positional encoding
is also sinusoidal but in a continuous form:

PEv = [sin(πf0v), cos(πf0v), sin(πf1v), ...] ∈ Rd/4,

where fi is the frequency term that evenly lies in the expo-
nential space from 1 to fmax = 128 (there are d/8 frequency
terms), v ∈ [vleft, vtop, vright, vbottom] where each component
is the normalized coordinate of a token RoI that lies in [0, 1].
The final positional encoding is these four positional encod-
ing parts concatenated:

PE = [PEleft|PEtop|PEright|PEbottom] ∈ Rd.

A.2. More Visualizations
We visualize the detailed RoI adjustments in each itera-
tion in the focusing transformer of our bootstrapped Sparse-
Former SF-BAugReg in Figure 1 and 2. In addition to that,
we perform visualizations on assorted bootstrapped Sparse-
Formers (SF-BAugReg, SF-LAugReg, SF-BCLIP, and SF-LCLIP)
on IN-1K val samples in Figure 3 and 4. Bootstrapped
SparseFormers exhibit better sparsity and localization on
foregrounds than the original SparseFormer.

Figure 1. RoI adjustments in each iteration in SF-BAugReg.

1

Figure 2. RoI adjustments (cont’d).

SF
-T

in
y

SF
-B

Au
gR
eg

SF
-L

Au
gR
eg

SF
-B

CL
IP

SF
-L

CL
IP

Bo
ot

st
ra

pp
ed

 (o
ur
s)

Figure 3. Visualizations on the original SparseFormer and our bootstrapped SparseFormers. For each image, there are an input image,
token RoIs in the {first, third, last} stage, and sampling points in the last stage in the focusing transformer from left to right.

SF
-T

in
y

SF
-B

Au
gR
eg

SF
-L

Au
gR
eg

SF
-B

CL
IP

SF
-L

CL
IP

Bo
ot

st
ra

pp
ed

 (o
ur
s)

Figure 4. Visualizations (cont’d).

