
CLOVA: A Closed-LOop Visual Assistant with Tool Usage and Update

Supplementary Material

1. Framework of CLOVA
The pseudo-code of CLOVA is summarized in Algorithm 1.

Algorithm 1 CLOVA
Input: LLMs, visual tools, instruction data T =

{T1, T2, · · · , Tt}, demonstration pool D, prompt pool
P = ∅.

Output: Updated D, updated P
1: for i = 1, 2, . . . , t do
2: Perform inference for Ti by generating plan and program.
3: if Ti is correctly solved then
4: Save the plan and program to D.
5: else
6: Convert intermediate results into language.
7: Perform global reflection.
8: Perform training-validation prompt tuning, store in-

context examples into D and prompts in P .
9: if Updated tools solve Ti incorrectly then

10: Perform local reflection.
11: Perform training-validation prompt tuning, store in-

context examples into D and prompts in P .
12: end if
13: end if
14: end for

2. Comparisons with related methods
In Tab. 1, we present a more detailed comparison table with
more related methods. In the table, ‘Global’ means the
global reflection, ‘Local’ means the local reflection, ‘In-
struction’ means instruction-following tuning, ‘RL’ means
reinforcement learning, and ‘Prompt’ means using prompt
examples as in-context learning. We observe that many
tool-usage methods do not have a reflection capability, and
few methods use global reflection to improve the plans
or programs generated by LLMs. Different from them,
CLOVA uses both global reflection and local reflection to
identify tools that need to be updated, capable of han-
dling complex instructions. Moreover, as we all know, our
method is the first work to update visual tools, through
which the visual assistant can better adapt to new environ-
ments.

3. Prompt Examples
3.1. In-context examples

In the inference phase of our method, CLOVA generates
plans and programs based on in-context examples that in-

clude correct examples and incorrect examples with crite-
ria. Here we show some correct examples and incorrect
examples for the compositional VQA, multi-image reason-
ing, image editing, and factual knowledge tagging tasks, as
shown in Figs. 1 to 4.

3.2. Prompts in inference

In the inference phase, we use LLMs to generate plans and
programs. We show examples of prompts for plan genera-
tion and program generation in Figs. 5 and 6, respectively.

3.3. Prompts in reflection

In the reflection phase, we use LLMs for global reflection
and local reflection. We show two examples of prompts
for global reflection and local reflection in Figs. 7 and 8,
respectively.

3.4. Prompts in learning

In the learning phase, we use LLMs to infer answers for the
VQA tool, and then tune prompts of the VQA tool using the
question and inferred answer. One example of prompts sent
to LLMs for answer inferring is shown in Fig. 9, respec-
tively.

4. Details of Tool update
4.1. Update VQA tool

4.1.1 Model

We use the BLIP [11] model for the VQA tool. One BLIP
model is composed of three components: an image encoder,
an image-grounded question encoder, and an answer coder,
which are used to extract image features, extract question
features, and generate answers, respectively. In our prompt
tuning scheme, the visual features are extracted from the
image encoder followed by average pooling, whose dimen-
sion is 768. We concatenate learnable prompts with the
inputs to the answer decoder, guiding the answer decoder
to generate desirable answers. The architecture of BLIP is
shown in Fig. 10.

4.1.2 Training

The size of learnable prompts is R16×768, that is we learn
16 vectors as prompts, and the dimension of each one is
768. Since it is non-trivial to define visual concepts for the
VQA tool, we do not store concepts in the prompt pool of
the VQA tool, and all learned prompts and stored together.

Instruction : Is the vehicle in the top of the image?
Plan:
Step1, Locate the upper region of the given image, and obtain bounding boxes of the upper region.
Step2, Crop the upper region from the given image, based on bounding boxes of the upper region. The bounding boxes are obtained in Step1.
Step3, Locate vehicle in the upper region of the given image, and obtain bounding boxes of vehicle. The upper region is cropped in Step2.
Step4, Count the number of vehicle, based on bounding boxes of vehicle. The bounding boxes are obtained in Step3.
Step5, Obtain whether the answer is 'yes' or 'no', based on the number of vehicles. The number is obtained in Step4. If the number is greater
than zero, the answer is 'yes'; On the contrary, the answer is 'no'.
Step6, Visualize results.
Program:
BOX0=LOC(image=IMAGE,object='TOP')
IMAGE0=CROP(image=IMAGE,box=BOX0)
BOX1=LOC(image=IMAGE0,object='vehicle')
ANSWER0=COUNT(box=BOX1)
ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
FINAL_RESULT=RESULT(var=ANSWER1)

Instruction : Is the lamp different in color than the shirt?
Plan:
Step1, Locate the lamp in the given image, and obtain bounding boxes of lamp.
Step2, Crop the region of the lamp from the given image, based on bounding boxes of lamp. The bounding boxes are obtained in Step1.
Step3, Asking the image region of lamp, 'What color is the lamp?'. The image region of lamp is cropped in Step2.
Step4, Locate the shirt in the given image, and obtain bounding boxes of shirt.
Step5, Crop the region of the shirt from the given image, based on bounding boxes of shirt. The bounding boxes are obtained in Step4.
Step6, Asking the image region of shirt, 'What color is the shirt?'. The image region of lamp is cropped in Step5.
Step7, Obtain whether the answer is 'yes' or 'no', based on the color of lamp and the color of shirt. The color of lamp and shirt is obtained in
Step3 and Step6, respectively. If their color are the same, the answer is 'yes'; On the contrary, the answer is 'no'.
Step8, Visualize results.
Program:
BOX0=LOC(image=IMAGE,object='lamp')
IMAGE0=CROP(image=IMAGE,box=BOX0)
BOX1=LOC(image=IMAGE0,object='shirt')
ANSWER0=COUNT(box=BOX1)
ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
FINAL_RESULT=RESULT(var=ANSWER1)
Reason: The plan is correct, and can address the task. But the Step3-Step6 of the program does not match the plan. The plan locates, crops,
and asks color of the lamp and shirt, but the program counts the number of lamp.

Instruction: Is the vehicle in the top of the image?
Plan:
Step1, Locate the upper region of the given image, and obtain bounding boxes of the upper region.
Step2, Crop the upper region from the given image, based on bounding boxes of the upper region. The bounding boxes are obtained in Step1.
Step3, Locate vehicle in the upper region of the given image, and obtain bounding boxes of vehicle. The upper region is cropped in Step2.
Step4, Count the number of vehicle, based on bounding boxes of vehicle. The bounding boxes are obtained in Step3.
Step5, Obtain whether the answer is 'yes' or 'no', based on the number of vehicles. The number is obtained in Step4. If the number is greater
than zero, the answer is 'yes'; On the contrary, the answer is 'no'.
Step6, Visualize results.

Instruction: On which side of the picture are the yellow chairs, the right or the left?
Plan:
Step1, Locate the yellow chairs in the given image and obtain bounding boxes of the yellow chairs.
Step2, Crop the region where the yellow chairs are located from the given image, based on the bounding boxes of the yellow chairs. The
bounding boxes are obtained in Step1.
Step3, Obtain whether the yellow chairs are on the right or left side of the picture, based on the position of the cropped region. If the region
is on the right side of the picture, the answer is 'right'; On the contrary, the answer is 'left'.
Step4, Visualize the results.
Reason: The Step1-Step3 in the plan are correct. Using the position of the cropped region is not supported. It should first crop the left region
of the image, and then detect where there are yellow chairs. If not, the answer is right.

(a) Correct examples for plan generation

(b) Incorrect examples for plan generation

(c) Correct examples for program generation

(d) Incorrect examples for program generation

Figure 1. Demonstration examples for compositional VQA tasks in Dp,s, Dp,f , Dc,s, and Dc,f .

Method Visual Tool Reflection Update LLMs Update Tools
ART [16] ✗ ✗ Prompt -
LATM [1] ✗ Global Prompt -

TRICE [18] ✗ Global Instruction + RL -
ToolkenGPT [7] ✗ - ✗ -
Toolformer [21] ✗ - Fine-tune -
VISPROG [6] ✓ ✗ ✗ ✗

Visual ChatGPT [24] ✓ ✗ ✗ ✗
InternGPT [13] ✓ ✗ ✗ ✗

HuggingGPT [22] ✓ ✗ ✗ ✗
ViperGPT [23] ✓ ✗ ✗ ✗

ToT [8] ✓ ✗ ✗ ✗
Chameleon [15] ✓ ✗ ✗ ✗

ControlLLM [14] ✓ ✗ ✗ ✗
MM-REACT [26] ✓ ✗ ✗ ✗

Llava-plus [12] ✓ ✗ Instruction ✗
Gorilla [17] ✓ ✗ Instruction ✗

GPT4TOOLs [25] ✓ ✗ Instruction ✗
OpenAGI [4] ✓ ✗ Reinforcement Learning ✗
AssistGPT [3] ✓ Global Prompt ✗

CLOVA (Ours) ✓ Global+Local Prompt Prompt

Table 1. Comparisons with representative tool-usage methods.

We use questions and inferred answers of incorrect cases
(detailed in Section 3.4) to update the VQA tool. We also
store correct cases with zero vectors as prompts. We use
the language modeling loss [11] to train learnable prompts,
where the Adam optimizer is used and the learning rate is
1e− 3. We train the prompts 100 steps for each instance.

4.1.3 Inference

The prompt ensemble process of the VQA tool has two
steps. (1) We roughly select out 20 prompts from the
prompt pool as candidates, by computing the similarity be-
tween the given query instance and stored instances in the
prompt pool. (2) We use prompt ensemble (detailed in Sec-
tion 3.4) to aggregate the 20 prompts for a query instance.
In other words, we do not aggregate all stored prompts for
a query instance, but 20 similar instances.

4.2. Update LOC tool

4.2.1 Model

In CLOVA, we use the OWL-ViT model [10] for object lo-
calization as the LOC tool. The architecture of OWL-ViT is
shown in Fig. 11. OWL-ViT model uses a standard vision
transformer as the image encoder and a similar transformer
architecture as the text encoder. It removes the token pool-
ing and final projection layer, and instead linearly projects
each output token representation to obtain per-object image

embeddings for classification. Besides, box coordinates are
obtained by passing token representations through a small
MLP. The text embeddings, which are called queries, are
obtained by passing category names or other textual ob-
ject descriptions through the text encoder. At inference
time, given a set of candidate class names and an image,
the model predicts a bounding box and a probability with
which each query, and filters out the bounding box with the
prediction confidence less than 0.1.

4.2.2 Training

In this study, upon identifying the need to update the
LOC tool for learning a specific concept, we employ
instance-wise prompts to update the OWL-ViT model. To
achieve this, CLOVA first collect training data from open-
vocabulary datasets. We adopt LVIS dataset [5] for OWL-
ViT model. Taking the concept ”glove” as an exam-
ple, CLOVA randomly selects 200 samples from the LVIS
dataset, whose class labels contain a glove as the training
data. During training, visual features are extracted from
the backbone, and CLOVA concatenates learnable prompts
with the inputs to the vision transformer decoder. The
model is trained with original losses introduced by OWL-
ViT where only the prompts are learned. The losses in-
clude classification loss and bounding box regression loss.
The former uses focal sigmoid cross-entropy [27] while the
latter uses L1 loss. For classification loss, we regard the

Instruction: An image shows one bare hand with the thumb on the right holding up a belly-first, head-up crab, with water in the background.
Plan:
Step1, Asking the left image, 'Does the image shows one bare hand with the thumb on the right holding a crab?'.
Step2, Asking the right image, 'Does the image shows one bare hand with the thumb on the right holding a crab?'.
Step3, Asking the left image, 'Is the crab belly-first and head-ups?'.
Step4, Asking the right image, 'Is the crab belly-first and head-ups?'.
Step5, Asking the left image, 'Is there water in the background?'.
Step6, Asking the right image, 'Is there water in the background?'.
Step7, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step1, Step3, and Step5. If all
answers obtained in Step1, Step3, and Step5 are 'yes', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step8, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step2, Step4, and Step6. If all
answers obtained in Step2, Step4, and Step6 are 'yes', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step9, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step7 and Step8. If one of the two
answers is equal to 'yes' and the rest one answer is equal to 'no', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step10, Visualize results.

Instruction: There are two pairs of hands wearing gloves.
Plan:
Step1, Asking the left image, 'How many pairs of hands are in the image?'.
Step2, Asking the right image, 'How many pairs of hands are in the image?'.
Step3, Asking the left image, 'Are the hands wearing gloves?'.
Step4, Asking the right image, 'Are the hands wearing gloves?'.
Step5, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the number obtained in Step1 and answers obtained in Step3.
If the number is equal to '2' and the answer is equal to 'yes', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step6, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the number obtained in Step2 and answers obtained in Step4.
If the number is equal to '2' and the answer is equal to 'yes', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step7, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step5 and Step6. If one of the two
answers is equal to 'yes' and the rest one answer is equal to 'no', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step8, Visualize results.
Reason: In Step5 of the plan, the plan judge whether there are two pairs of hands in the left image. It is wrong, the plan should judge whether the sum of
pairs of hands in the two images are equal to two, and then judge whether the two pairs of hands are wearing gloves.

(a) Correct examples for plan generation

(b) Incorrect examples for plan generation

Instruction: An image shows one bare hand with the thumb on the right holding up a belly-first, head-up crab, with water in the background.
Plan:
Step1, Asking the left image, 'Does the image shows one bare hand with the thumb on the right holding a crab?'.
Step2, Asking the right image, 'Does the image shows one bare hand with the thumb on the right holding a crab?'.
Step3, Asking the left image, 'Is the crab belly-first and head-ups?'.
Step4, Asking the right image, 'Is the crab belly-first and head-ups?'.
Step5, Asking the left image, 'Is there water in the background?'.
Step6, Asking the right image, 'Is there water in the background?'.
Step7, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step1, Step3, and Step5. If all
answers obtained in Step1, Step3, and Step5 are 'yes', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step8, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step2, Step4, and Step6. If all
answers obtained in Step2, Step4, and Step6 are 'yes', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step9, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step7 and Step8. If one of the two
answers is equal to 'yes' and the rest one answer is equal to 'no', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step10, Visualize results.
Program:
ANSWER0=VQA(image=LEFT,question='Does the image shows one bare hand with the thumb on the right holding a crab?')
ANSWER1=VQA(image=RIGHT,question='Does the image shows one bare hand with the thumb on the right holding a crab?')
ANSWER2=VQA(image=LEFT,question='Is the crab belly-first and head-ups?')
ANSWER3=VQA(image=RIGHT,question='Is the crab belly-first and head-ups?')
ANSWER4=VQA(image=LEFT,question='Is there water in the background?')
ANSWER5=VQA(image=RIGHT,question='Is there water in the background?')
ANSWER6=EVAL(expr='{ANSWER0} and {ANSWER2} and {ANSWER4}')
ANSWER7=EVAL(expr='{ANSWER1} and {ANSWER3} and {ANSWER5}')
ANSWER8=EVAL(expr='{ANSWER6} xor {ANSWER7}')
FINAL_ANSWER=RESULT(var=ANSWER8)

(c) Correct examples for program generation

Instruction: A mitten is being worn in one image and the mittens are not being worn in the other image.
Plan:
Step1, Asking the left image, 'Is a mitten being worn in the image?'.
Step2, Asking the right image, 'Is a mitten being worn in the image?'.
Step3, Obtain whether the answer is 'yes' or 'no' by executing Python expression, based on the answers obtained in Step1 and Step2. If one of the two
answers is equal to 'yes' and the rest one answer is equal to 'no', the answer in this step is 'yes'; On the contrary, the answer is 'no'.
Step4, Visualize results.
Program:
ANSWER0=VQA(image=LEFT,question='Is a mitten being worn in the image?')
ANSWER1=VQA(image=RIGHT,question='Is a mitten being worn in the image?')
ANSWER2=EVAL(expr='{ANSWER0} and {ANSWER1}')
FINAL_ANSWER=RESULT(var=ANSWER2)
Reason: The plan is correct, and can address the given question. But the Step3 of the program does not match the plan. The program should use 'xor'
instead of 'and'.

(d) Incorrect examples for program generation

Figure 2. Demonstration examples for multi-image reasoning tasks in Dp,s, Dp,f , Dc,s, and Dc,f .

Instruction: Hide the face of Nicole Kidman with face_with_tongue.
Plan:
Step1, Detect face regions from the given image, and obtain bounding boxes of face regions.
Step2, Select the face region of Nicole Kidman, based on the bounding boxes obtained in Step1.
Step3, Add the emoji face_with_tongue to the face region of Nicole Kidman in the given image, where the face region of Nicole Kidman is obtained in Step2.
Step4, Visualize results.

Instruction: Hide the face of Nicole Kidman with face_with_tongue.
Plan:
Step1, Detect face regions from the given image, and obtain bounding boxes of face regions.
Step2, Add the emoji face_with_tongue to the face regions the given image, where the face region is obtained in Step1.
Step4, Visualize results.
Reason: The plan is incorrect. In Step2, the program should use the SELECT model to classify face regions of Nicole Kidman, instead of adding emoji to all
faces.

(a) Correct examples for plan generation

(b) Incorrect examples for plan generation

Instruction: Hide the face of Nicole Kidman with face_with_tongue.
Plan:
Step1, Detect face regions from the given image, and obtain bounding boxes of face regions.
Step2, Select the face region of Nicole Kidman, based on the bounding boxes obtained in Step1.
Step3, Add the emoji face_with_tongue to the face region of Nicole Kidman in the given image, where the face region of Nicole Kidman is obtained in Step2.
Step4, Visualize results.
Program:
OBJ0=FACEDET(image=IMAGE)
OBJ1=SELECT(image=IMAGE,object=OBJ0,query='Nicole Kidman',category=None)
IMAGE0=EMOJI(image=IMAGE,object=OBJ1,emoji='face_with_tongue')
FINAL_RESULT=RESULT(var=IMAGE0)

(c) Correct examples for program generation

Instruction: Hide the face of Nicole Kidman with face_with_tongue.
Plan:
Step1, Detect face regions from the given image, and obtain bounding boxes of face regions.
Step2, Select the face region of Nicole Kidman, based on the bounding boxes obtained in Step1.
Step3, Add the emoji face_with_tongue to the face region of Nicole Kidman in the given image, where the face region of Nicole Kidman is obtained in
Step2.
Step4, Visualize results.
Program:
OBJ0=FACEDET(image=IMAGE)
OBJ1=SELECT(image=IMAGE,object=OBJ0,query='Nicole Kidman',category=None)
IMAGE0=REPLACE(image=IMAGE,object=OBJ1,emoji='face_with_tongue')
FINAL_RESULT=RESULT(var=IMAGE0)
Reason: The plan is correct, and can address the given question. But the Step3 of the program does not match the plan. The program should use EMOJI
functions instead of REPLACE.

(d) Incorrect examples for program generation

Figure 3. Demonstration examples for image editing tasks in Dp,s, Dp,f , Dc,s, and Dc,f .

learned concept and one randomly selected class name in
the image as positive labels and randomly select 13 class
names as negative labels per image to avoid overfitting. The
number of learned prompts is 100, and the prompt is ran-
domly initialized. We set the maximum training step as
100. If within 100 steps, the sample could be detected cor-
rectly by the model, CLOVA would save this sample and
the prompt, otherwise, CLOVA will remove this sample and
the corresponding prompt. Only if all the positive labels are
correctly classified and the average IOU between the pre-
diction boxes and ground-truth boxes is larger than 0.6, we
recognize this sample is correctly detected. We use Adam
as the optimizer and set the learning rate as 5e − 4. Even-

tually, we save the feature and the learned prompt of each
correctly detected instance for this concept.

4.2.3 Inference

The prompt ensemble process of the LOC tool also has two
steps. (1) Given a visual concept and a query image, we se-
lect all the prompts having the same visual concept from the
prompt pool as candidates. We then filter out the prompts by
making predictions with each candidate prompt, if the pre-
diction confidence is larger than 0.1, we will use the prompt
for the query image, otherwise, we will remove this candi-
date prompt. (2) We use prompt ensemble (detailed in Sec-
tion 3.4) to aggregate all the selected prompts for a query

Instruction: Tag the wild animals that lives on the land
Plan:
Step1, Locate wild animals from the given image, and obtain bounding boxes of wild animals.
Step2, List 'wild animals that lives on the land' by asking GPT.
Step3: Classify wild animals that lives on the land, based on the bounding boxes of wild animals obtained in Step1 and the wild animal list obtain in Step2.
Step4: Tag the bounding boxes and labels to the classified wild animals.
Step5: Visualize results.

Instruction: Tag two utensils used for drinking, which are usually in the kitchen
Plan:
Step1, Locate utensil from the given image, and obtain bounding boxes of utensil.
Step2, List two 'utensils used for drinking' by asking GPT.
Step3: Classify utensil, based on the bounding boxes of utensil obtained in Step1 and the utensil list obtain in Step2.
Step4: Tag the bounding boxes and labels to the classified utensil.
Step5: Visualize results.
Reason: In Step2, it should list 'utensils used for drinking, which are usually in the kitchen', instead of only 'utensils used for drinking'.

(a) Correct examples for plan generation

(b) Incorrect examples for plan generation

Instruction: Tag the wild animals that lives on the land
Plan:
Step1, Locate wild animals from the given image, and obtain bounding boxes of wild animals.
Step2, List 'wild animals that lives on the land' by asking GPT.
Step3: Classify wild animals that lives on the land, based on the bounding boxes of wild animal obtained in Step1 and the wild animals list obtain in Step2.
Step4: Tag the bounding boxes and labels to the classified wild animals.
Step5: Visualize results.
Program:
OBJ0=LOC(image=IMAGE,object='wild animal')
LIST0=LIST(query='wild animals that lives on the land',max=20)
OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=LIST0)
IMAGE0=TAG(image=IMAGE,object=OBJ1)
FINAL_RESULT=RESULT(var=IMAGE0)

(c) Correct examples for program generation

Instruction: Tag the wild animals that lives on the land
Plan:
Step1, Locate wild animals from the given image, and obtain bounding boxes of wild animals.
Step2, List 'wild animals that lives on the land' by asking GPT.
Step3: Classify wild animals that lives on the land, based on the bounding boxes of wild animal obtained in Step1 and the wild animals list obtain in Step2.
Step4: Tag the bounding boxes and labels to the classified wild animals.
Step5: Visualize results.
Program:
OBJ0=LOC(image=IMAGE,object='wild animal')
LIST0=LIST(query='wild animals that lives on the land',max=20)
OBJ1=LOC(image=IMAGE,object=land')
IMAGE0=TAG(image=IMAGE,object=OBJ1)
FINAL_RESULT=RESULT(var=IMAGE0)
Reason: The plan is correct, but the program does not match the plan. In Step3 in the program, it is wrong to use the LOC model. It should use the
CLASSIFY for OBJ0 obtained in Step1.

(d) Incorrect examples for program generation

Figure 4. Demonstration examples for factual knowledge taggings task in Dp,s, Dp,f , Dc,s, and Dc,f .

instance and contact the prompt with the input to produce a
prediction.

4.3. Update SEG tool

4.3.1 Model

We use the Maskformer [2] model for the SEG tool. One
Maskformer model is composed of three components: a
backbone, a pixel decoder, and a transformer decoder. The

backbone extracts features of images. Then, the pixel de-
coder gradually upsamples image features to extract per-
pixel embeddings. Finally, the transformer decoder uses
image features with our learnable prompts to generate per-
mask embeddings that are combined with pre-pixel embed-
ding for mask prediction. In our prompt tuning scheme, the
visual features are extracted from the backbone followed
by average pooling, whose dimension is 256. We concate-
nate learnable prompts with the inputs to the transformer

Some incorrect cases and their reasons are as follows.
Instruction : Who is in the blue water?
Plan:
Step1, Locate blue regions in the given image, and obtain bounding boxes of the blue regions.
Step2, Crop the blue regions from the given image, based on the bounding boxes of the blue regions. The bounding boxes are obtained in Step1.
Step3, Locate people in the blue regions of the given image, and obtain bounding boxes of people. The blue regions are cropped in Step2.
Step4, Count the number of people, based on bounding boxes of people. The bounding boxes are obtained in Step3.
Step5, Obtain the names of the people in the blue water, based on the number of people. The number is obtained in Step4. If there is only one person, provide
their name; if there are multiple people, provide a list of their names.
Step6, Visualize results.
Reason:
The Step4-Step6 in the plan is correct. After obtaining the bounding boxes of people in Step3, the plan should crop the image region of the person, and ask who is
the person, instead of counting the number.

You are a planner. Given a question, you need to generate the plan.

Now, you need to generate plan for the following query.
Instruction : Is there any snow or grass in this scene?
Plan:

Some correct cases are as follows.
Instruction : What color is the curtain that is to the right of the mirror?
Plan:
Step1, Locate mirror in the given image, and obtain bounding boxes of mirror.
Step2, Crop the region on the right side of the mirror from the given image, based on the bounding boxes of mirror. The bounding boxes are obtained in Step1.
Step3, Asking the image region on the right side of the mirror, 'What color is the curtain?'. The image region is cropped in Step2.
Step4, Visualize results.

Figure 5. Prompts for plan generation.

Some incorrect cases and their reasons are as follows.
Instruction : What is the red piece of clothing in this photograph?
Plan:
Step 1: Locate the red piece of clothing in the given photograph and obtain the bounding box of the clothing.
Step 2: Crop the region of the red piece of clothing from the given photograph based on the bounding box obtained in step 1.
Step 3: Asking the image region of the red piece of clothing, "What is the red piece of clothing?"
Step 4: Visualize results.
Program:
BOX0=LOC(image= IMAGE,object='red piece of clothing')
IMAGE0=CROP(image= IMAGE,box=BOX0)
ANSWER0=VQA(image=IMAGE1,question='What is the red piece of clothing?')
FINAL_RESULT=RESULT(var=ANSWER0)
Reason: The Step3 in the program have bug, because the variable IMAGE1 is not defined. It should be IMAGE0.

You are a programmer. You need to generate the program based on Instruction and Plan.

Now, you need to generate program for the following query.
Instruction: Is the baseball man to the right or to the left of the woman?
Plan:
Step1, Locate the baseball man in the given image, and obtain bounding boxes of the baseball man.
Step2, Locate the woman in the given image, and obtain bounding boxes of the woman.
Step3, Obtain the relative position of the baseball man and the woman, based on the bounding boxes of the baseball man and the woman. If the baseball man is to
the right of the woman, the answer is 'right'; On the contrary, the answer is 'left'.
Step4, Visualize results.
Program:

Some correct cases are as follows.
Instruction: What color is the curtain that is to the right of the mirror?
Plan:
Step1, Locate mirror in the given image, and obtain bounding boxes of mirror.
Step2, Crop the region on the right side of the mirror from the given image, based on the bounding boxes of mirror. The bounding boxes are obtained in Step1.
Step3, Asking the image region on the right side of the mirror, 'What color is the curtain?'. The image region is cropped in Step2.
Step4, Visualize results.
Program:
BOX0=LOC(image=IMAGE,object='mirror')
IMAGE0=CROP_RIGHTOF(image=IMAGE,box=BOX0)
ANSWER0=VQA(image=IMAGE0,question='What color is the curtain?')
FINAL_RESULT=RESULT(var=ANSWER0)…

Figure 6. Prompts for program generation

You are a debugger. You need to check which model cause of the wrong answer. Errors may exist in the plan, program, or functions called by the program.

The failed case needs to be debugged is as follows.
Instruction: Is the wall behind a boy?
Description of the Input Image: a photography of a man holding a wii remote in his hand
Human Feedback: The correct answer is no
Our Wrong Answer: yes
Following are the decomposed plan, used program, and obtained result in each step.
Plan:
Step1, Locate the boy in the given image, and obtain bounding boxes of the boy.
Step2, Crop the image region behind the boy from the given image, based on bounding boxes of the boy. The bounding boxes are obtained in Step1.
Step3, Locate the wall in the region behind the boy, and obtain bounding boxes of the wall. The region behind the boy is cropped in Step2.
Step4, Count the number of walls, based on bounding boxes of walls. The bounding boxes are obtained in Step3.
Step5, Obtain whether the answer is 'yes' or 'no', based on the number of walls. The number is obtained in Step4. If the number is greater than zero, the answer
is 'yes'; On the contrary, the answer is 'no'.
Step6, Visualize results.
Program and obtained result in each step:
Step1 Program: BOX0=LOC(image=IMAGE,object='boy')
The coordinate of BOX0: [[100, 43, 414, 374]]
Step2 Program: IMAGE0=CROP_BEHIND(image=IMAGE,box=BOX0)
The description of IMAGE0: a photography of a man holding a wii remote in his hand
Step3 Program: BOX1=LOC(image=IMAGE0,object='wall')
The coordinate of BOX1: [[279, 1, 498, 207], [30, 1, 498, 207]]
Step4 Program: ANSWER0=COUNT(box=BOX1)
Result of ANSWER0: 2
Step5 Program: ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
Result of ANSWER1: yes
Step6 Program: FINAL_RESULT=RESULT(var=ANSWER1)
Result of FINAL_RESULT: yes
Error Location:
Reason:

Instruction: Is the lamp different in color than the shirt?
Description of the Input Image: a photography of a couple of people in a restaurant
Human Feedback: The correct answer is yes
Our Wrong Answer: no
Following are the decomposed plan, used program, and obtained result in each step.
Plan:
Step1, Locate the lamp in the given image, and obtain bounding boxes of lamp.
Step2, Crop the region of the lamp from the given image, based on bounding boxes of lamp. The bounding boxes are obtained in Step1.
Step3, Asking the image region of lamp, 'What color is the lamp?'. The image region of lamp is cropped in Step2.
Step4, Locate the shirt in the given image, and obtain bounding boxes of shirt.
Step5, Crop the region of the shirt from the given image, based on bounding boxes of shirt. The bounding boxes are obtained in Step4.
Step6, Asking the image region of shirt, 'What color is the shirt?'. The image region of lamp is cropped in Step5.
Step7, Obtain whether the answer is 'yes' or 'no', based on the color of lamp and the color of shirt. The color of lamp and shirt is obtained in Step3 and Step6,
respectively. If their color are the same, the answer is 'yes'; On the contrary, the answer is 'no'.
Step8, Visualize results.
Program and obtained result in each step:
Step1 Program: BOX0=LOC(image=IMAGE,object='lamp')
Result of The coordinate of BOX0: [[45, 78, 245, 345]]
Step2 Program: IMAGE0=CROP(image=IMAGE,box=BOX0)
Result of The description of IMAGE0: a photography of a couple of people on a snowboard in the snow
Step3 Program: BOX1=LOC(image=IMAGE0,object='shirt')
Result of BOX1 is empty
Step4 Program: ANSWER0=COUNT(box=BOX1)
Result of ANSWER0: 0
Step5 Program: ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
Result of ANSWER1: no
Step6 Program: FINAL_RESULT=RESULT(var=ANSWER1)
Result of FINAL_RESULT: no
Error Location: program
Reason: The plan are correct, and can address the given question. But the Step3-Step6 of the program does not match the plan. The plan locates, crops, and asks
color of the lamp and shirt, but the program counts the number of lamp.

Figure 7. Prompts for global reflection.

decoder. The architecture of Maskformer is shown in Fig.
12.

4.3.2 Training

The size of learnable prompts is R100×256, that is we learn
100 vectors as prompts, and the dimension of each one is

The failed case is as follows.
Instruction: On which side of the photo is the stuffed bear?
Description of the Input Image: a photography of a display case with teddy bears
Desirable Answer: right
Our Wrong Answer: left
It has totally 4 steps. Step1 have been checked:
Step1
Plan: Locate stuffed bear in the given image
Program: BOX0=LOC(image=IMAGE, object='stuffed bear')
Result of The coordinate of BOX0: [[136, 58, 184, 116], [191, 87, 227, 135]]]

You are a debugger. You need to check which model cause of the wrong answer. After given one step, you need to determine if this step is correct. If it is incorrect,
you need to provide the error location, and explain the reason.

Now you need to check Step2.
Plan: Crop the region of stuffed bear from the given image.
Program: IMAGE0=CROP(image=IMAGE,box=BOX0)
The description of IMAGE0: a photography of a group of stuffed animals sitting next to each other.

Is this Step2 correct? Errors may exist in the plan, program, or functions called by the program If they are correct, directly output "yes" and do not output any
other content. If incorrect, firstly output "no", then provide the error location and reason.

Figure 8. Prompts for local reflection.

256. We remove the classification loss of Maskformer, and
only use the mask loss [2] to train learnable prompts, where
the Adam optimizer is used and the learning rate is 1e− 1.
Given a visual concept that needs to be learned, we ran-
domly select 50 samples having this visual concept from
the LVIS dataset [5]. We train the prompts 100 steps for
each instance. After training, we store the concept name,
and image features of instances, and learned prompts of im-
age features in the the prompt pool.

4.3.3 Inference

The prompt ensemble process of the SEG tool also has two
steps. (1) Given a visual concept, we roughly select out 10
prompts having the same visual concept from the prompt
pool as candidates, by computing the similarity between
the given query instance and stored instances in the prompt
pool. (2) We use prompt ensemble (detailed in Section 3.4)
to aggregate the 10 prompts for a query instance. In other
words, we do not aggregate all stored prompts for a query
instance, but 10 similar instances.

4.4. Update SELECT and CLASSIFY tools

4.4.1 Model

We utilize CLIP [19] as the SELECT and CLASSIFY tools.
The model consists of a Vision Transformer (ViT) as the
image encoder and a Transformer-based text encoder. The
image encoder and text encoder encode images and text
descriptions into high-dimensional feature vectors respec-
tively. It learns to align the representations of related con-
tent and separate unrelated content in the embedding space
by utilizing a contrastive loss function. This loss function
encourages CLIP to maximize the similarity between cor-
responding image-text pairs while minimizing it for non-

corresponding pairs. In the prompt tuning scheme, learn-
able tokens are introduced into the image encoder and fine-
tuned. These prompts are stored in the prompt pool for
later use. During inference, the prompt is selected from the
prompt pool and replaced with the image encoder to im-
prove the precision of query data. The architecture of CLIP
is shown in Fig. 13.

4.4.2 Training

We update the CLIP through the deep prompt tuning [9].
We utilize the Adam optimizer with a learning rate set to
1e− 2. To obtain training data, CLOVA uses the concept to
be learned to automatically retrieve 7 images from Google
Images as positive data through web scraping. The first
image is used for validation, while the remaining ones are
used for training. Furthermore, CLOVA derives additional
concepts related to but different from the target concept
through GPT and subsequently collected data associated
with these concepts as negative samples. CLOVA then uses
both the positive data and negative data for training. Dur-
ing the training phase, we introduce 100 learnable prompts
for each of the first three layers of the vision transformer
to facilitate prompt tuning. We conduct prompt tuning for
100 steps per instance, followed by a validation step. If
the accurate prediction is achieved on the validation data,
CLOVA systematically stores features of crawled images
and learned prompts in the prompt pool, otherwise, these
learned prompts are discarded.

4.4.3 Inference

The prompt ensemble process of the SELECT and CLAS-
SIFY tools also has two steps. (1) Given query data, we se-
lect data with its feature and prompt from the prompt pool

Following are some inferring examples.
Instruction: It there three bottles on the table?
The description of Input image: a photography of a restaurant with a table set
Human Feedback: The correct answer is yes
Our Wrong Answer: no
Following are the plan, used program, and obtained result in each step.
Plan:
Step1, Locate table in the given image, and obtain bounding boxes of table.
Step2, Crop the region of table from the given image, based on bounding boxes of table. The bounding boxes are obtained in Step1.
Step3, Asking the image region of table, ‘How many bottles?'. The image region of the table is obtained in Step2.
Step4, Obtain the answer, based on the intermediate answers obtained in Step3.
Step5, Visualize results.
Program and obtained result in each step:
Step1
Program: BOX0=LOC(image=IMAGE,object='table')
The coordinate of BOX0: [[40, 240, 581, 479]
Step2
Program: IMAGE0=CROP(image=IMAGE,box=BOX0)
The description of IMAGE0: a photography of a table set with a white table cloth and red plates
Step3
Program: ANSWER0=VQA(image=IMAGE0,question= ’How many bottles?')
Results of ANSWER0: two
Step4
Program: ANSWER1=EVAL(expr="'yes' if {ANSWER0} == three' else 'no'")
Result of ANSWER1: no
Step5:
Program: FINAL_RESULT=RESULT(var=ANSWER1)
Result of FINAL_RESULT: no
Error Location: functions called by programs
Reason: In the Step3 of the program, the used function 'VQA' failed to count the number of bottles, as the obtained result of ANSWER0 is ‘two’ instead of ‘three'.
Correct answer of the wrong step: three

You are an inference maker. Your goal is that, given a failed case including a question, its desirable answer, our wrong answer, our plan, our programs, and the analysis
about the wrong step, you need to infer the desirable intermediate results of the wrong step.

Now, you will be given the failed case that needs to infer, as follows. Based on the expected answer, the intermediate results we got at each step of the program, and
the analysis of the wrong step. You need to inference the desirable intermediate results of the wrong VQA step.
Question: What color is the dog, brown or red?
Description of the Input Image: a photography of a group of motorcycles parked in a field
Desirable Answer: red
Our Wrong Answer: brown
Following are the decomposed plan, used program, and obtained result in each step.
Plan:
Step1, Locate the dog in the given image and obtain bounding boxes of the dog.
Step2, Crop the region where the dog is located from the given image, based on the bounding boxes of the dog. The bounding boxes are obtained in Step1.
Step3, Asking the image region of dog, ‘What color is the dog?'. The image region of the table is obtained in Step2.
Step4, Visualize results.
Program and obtained result in each step:
Step1
Program: BOX0=LOC(image=IMAGE,object='dog')
The coordinate of BOX0: [[51, 65, 83, 96]]
Step2
Program: IMAGE0=CROP(image=IMAGE,box=BOX0)
The description of IMAGE0: a photography of a dog is sniffing a toy in the grass
Step3
Program: ANSWER0=VQA(image=IMAGE0,question='What color is the dog?')
Result of ANSWER0: brown
Step4:
Program: FINAL_RESULT=RESULT(var=ANSWER0)
Result of FINAL_RESULT: brown
Error Location:
functions called by programs
Reason:
In Step3, the function 'VQA' failed to correctly infer the color of the dog based on the cropped region. The obtained result of ANSWER0 is 'brown', which is not one of
the expected colors 'red'
Correct answer of the wrong step:

Figure 9. Prompts of inferring answers for the VQA tool.

with the same concept as the query data. Subsequently, we
compute the similarity between the query data and the se-
lected data. The prompts corresponding to data with high
similarities are used for the query data. (2) We use prompt

ensemble (detailed in Section 3.4) to aggregate selected
prompts for the query data.

Self A'en)on

Feed Forward

Bi Self-A'

Cross A'en)on

Ques)on: What color is this
girl's clothes?

N✖ N✖

Feed Forward

Causal Self-A'

Cross A'en)on

N✖

Feed Forward

Green

❄

❄ ❄

#

Answer:

Image
Encoder

Image-grounded
Ques)on Encoder

Answer
Decoder

#❄
Frozen
model

Learnable
prompt

Figure 10. The architecture of BLIP.

Text
Transformer

encoder

Vision
Transformer

encoder

Linear projection
Linear projection

.9 .1 .1

.0 .0 .1

.1 .0 .1

.8 .1 .1

Predicted
classes/queries

Predicted boxes
(𝑥𝑥1, 𝑦𝑦1, 𝑤𝑤1, ℎ1)

(𝑥𝑥2, 𝑦𝑦2, 𝑤𝑤2, ℎ2)

(𝑥𝑥3, 𝑦𝑦3, 𝑤𝑤3, ℎ3)

(𝑥𝑥4, 𝑦𝑦4, 𝑤𝑤4, ℎ4)

…

E
m

bed

CLS

giraffe
tree
car

giraffe

no object

no object

giraffe
Set prediction loss

Object image embeddings Learnable promptObject box embeddings

Query embeddings

Figure 11. The architecture of OWL-ViT.

4.5. Update REPLACE tool

We use Stable Diffusion [20] as the REPLACE tool. In
Stable Diffusion, the architecture comprises four key com-
ponents: Sampler, Variational Autoencoder (VAE), UNet,
and CLIPEmbedder. The Sampler and UNet focus on the
actual image generation, the VAE provides a deep under-

standing of image content, and the CLIPEmbedder ensures
the relevance and accuracy of the generated images in rela-
tion to the text inputs. We added learnable prompts to the
text encoder of the CLIPEmbedder component. During the
prompt tuning phase, we tune a prompt for training images
and store it. The dimensionality of the prompt is 768. The
architecture of Stable Diffusion is shown in Fig. 14.

backbone pixel
decoder❄ ❄

transformer
decoder ❄ MLP

N queries

Q

N mask embeddings

"

concatenate

N mask predic;ons

Binary mask loss

❄

"

❄
Frozen
model

Learnable
prompt

❄

Figure 12. The architecture of Maskformer.

pine grosheak

 Transformer Encoder Layer 𝐿1

...cl
s

 Transformer Encoder Layer 𝐿2

 Transformer Encoder Layer 𝐿𝑛

...cl
s

...

🔥

🔥

...

Encoder

Encoder
...

🔥 Head

❄

❄

❄

🔥 Tuned ❄ Frozen

Figure 13. The architecture of CLIP.

4.5.1 Training

In order to facilitate the learning of a specific concept for
the Stable Diffusion model, CLOVA employs web scrap-
ing techniques to retrieve 7 images representing this con-
cept from Google Images. We train prompts in the text

encoder of the Stable Diffusion model using downloaded
images. During the training process, the Latent Diffusion
Model(LDM) loss [20] is minimized. Subsequently, the
768-dimensional prompt obtained from the training stage is
stored in the prompt pool. In terms of experimental setup,

“a photo of ”𝑆∗

Tokenizer

Embedding Lookup

Text Transformer

73

𝑣0

𝑣73

𝑣508

𝑣701

508

701

508 701 73 ⟨ ∗ ⟩

508 701 73 ⟨ ∗ ⟩

Text Encoder

Input Sample

❄ Generator Noised Sample
...

...
...

...

...
...

...
...

𝑣∗⟨ ∗ ⟩ ? ? ? ?

❄

🔥

❄

🔥 Tuned ❄ Frozen

Figure 14. The architecture of Stable Diffusion.

we employ the Adam optimizer. Through our experimenta-
tion, we find that setting the learning rate to 5e−3 achieves
the best learning results.

4.5.2 Inference

Similar to other visual tools, inference for the Stable Dif-
fusion model also contains two steps. Given query data,
CLOVA first locates prompts corresponding to the concept
in the prompt pool and then loads the prompt into the text
encoder of the Stable Diffusion model. Based on the query
and mask, we perform editing on the input image.

5. More Experimental Results
5.1. Training-validation prompt tuning for the VQA

tool

We further evaluate the proposed validation-learning
prompt tuning scheme for the VQA tool, where experi-
ments are conducted on the compositional VQA task using
the GQA dataset. We use the BLIP model for the GQA
dataset and compare our prompt tuning scheme with direct
tuning parameters. We report accuracies with using differ-
ent numbers of training data. Results are shown in Fig. 15.
Our method has higher performance throughout the entire
training process, no matter whether the number of train-
ing data is small or large, showing the effectiveness of the

50 100 150 200 250 300 350 400 450 500 1000 2000 5000 10000
Data Number

63.0

63.5

64.0

64.5

65.0

65.5

Ac
cu

ra
cy

 (%
)

Accuracy on GQA
Parameter tuning
Training-Validation Prompt tuning

Figure 15. Accuracy curves on the GQA dataset

proposed validation-learning prompt tuning scheme for the
VQA tool.

5.2. Evaluation on the online setting

CLOVA can be applied to a more practical online learning
setting. In this case, CLOVA is evaluated in a dynamic data
stream. If it makes a correct prediction on a task, only the
inference phase is activated, and the task is tagged as a cor-
rect prediction; if it makes an incorrect prediction on a task,
this task is tagged as a wrong prediction, and the reflection
and learning phases are activated to update tools. After the
data stream, we calculate the accuracy based on tagged pre-
dictions of all cases. We conduct experiments on the com-
positional VQA and multi-image reasoning tasks, where the

Dataset Method LLama2-7B GPT-3.5-turbo GPT-4

GQA
Baseline 39.2 46.4 52.6

+ Update LLMs 44.8 51.0 55.4
+ Update visual tools 50.2 53.0 57.8

NLVRv2
Baseline 50.0 60.2 64.8

+ Update LLMs 57.4 61.0 66.4
+ Update visual tools 61.6 62.6 67.4

Table 2. Different LLMs on the online learning setting using the
GQA and NLVRv2 datasets.

GQA and NLVRv2 datasets are used. Results are shown
in Tab. 2. Similar to the offline setting in Section 4.2, up-
dating LLMs and visual tools both leads to improvements.

5.3. More case studies

We provide more cases to show the reflection and learn-
ing phases of CLOVA. The reflection and learning phases
for LLMs are shown in Fig. 16. The reflection and learn-
ing phases for the SELECT tool are shown in Fig. 17. The
reflection and learning phases for the LOC tool are shown
in Fig. 18. The reflection and learning phases for the RE-
PLACE tool are shown in Fig. 19. The reflection and learn-
ing phases for the CLASSIFY tool are shown in Fig. 20.
The reflection and learning phases for the SEG tool are
shown in Fig. 21.

References
[1] Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and

Denny Zhou. Large language models as tool makers. In
ICLR, 2024.

[2] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. In NeurIPS, pages 17864–17875, 2021.

[3] Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya
Chen, Zihan Fan, and Mike Zheng Shou. Assistgpt: A gen-
eral multi-modal assistant that can plan, execute, inspect, and
learn. arXiv preprint arXiv:2306.08640, 2023.

[4] Yingqiang Ge, Wenyue Hua, Jianchao Ji, Juntao Tan,
Shuyuan Xu, and Yongfeng Zhang. Openagi: When llm
meets domain experts. In NeurIPS, pages 5539–5568, 2023.

[5] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A
dataset for large vocabulary instance segmentation. In CVPR,
pages 5356–5364, 2019.

[6] Tanmay Gupta and Aniruddha Kembhavi. Visual program-
ming: Compositional visual reasoning without training. In
CVPR, pages 14953–14962, 2023.

[7] Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
Toolkengpt: Augmenting frozen language models with mas-
sive tools via tool embeddings. In NeurIPS, pages 45870–
45894, 2023.

[8] Pengbo Hu, Ji Qi, Xingyu Li, Hong Li, Xinqi Wang, Bing
Quan, Ruiyu Wang, and Yi Zhou. Tree-of-mixed-thought:
Combining fast and slow thinking for multi-hop visual rea-
soning. arXiv preprint arXiv:2308.09658, 2023.

[9] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, pages 709–727, 2022.

[10] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Lan-
guage models can solve computer tasks. In NeurIPS, pages
39648–39677, 2023.

[11] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In ICML,
pages 12888–12900, 2022.

[12] Shilong Liu, Hao Cheng, Haotian Liu, Hao Zhang, Feng
Li, Tianhe Ren, Xueyan Zou, Jianwei Yang, Hang Su, Jun
Zhu, Lei Zhang, Jianfeng Gao, and Chunyuan Li. Llava-
plus: Learning to use tools for creating multimodal agents.
2311.05437,arXiv, 2023.

[13] Zhaoyang Liu, Yinan He, Wenhai Wang, Weiyun Wang, Yi
Wang, Shoufa Chen, Qinglong Zhang, Yang Yang, Qingyun
Li, Jiashuo Yu, et al. Interngpt: Solving vision-centric tasks
by interacting with chatbots beyond language. arXiv preprint
arXiv:2305.05662, 2023.

[14] Zhaoyang Liu, Zeqiang Lai, Gao Zhangwei, Erfei Cui, Zhi-
heng Li, Xizhou Zhu, Lewei Lu, Qifeng Chen, Yu Qiao,
Jifeng Dai, and Wang Wenhai. Controlllm: Augment lan-
guage models with tools by searching on graphs. arXiv
preprint arXiv:2305.10601, 2023.

[15] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei
Chang, Ying Nian Wu, Song-Chun Zhu, and Jianfeng Gao.
Chameleon: Plug-and-play compositional reasoning with
large language models. In NeurIPS, pages 43447–43478,
2023.

[16] Bhargavi Paranjape, Scott M. Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and Marco Tulio
Ribeiro. Art: Automatic multi-step reasoning and tool-use
for large language models. ArXiv, abs/2303.09014, 2023.

[17] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. Gorilla: Large language model connected with
massive apis. arXiv preprint arXiv:2305.15334, 2023.

[18] Shuofei Qiao, Honghao Gui, Huajun Chen, and Ningyu
Zhang. Making language models better tool learners with
execution feedback. ArXiv, abs/2305.13068, 2023.

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, pages 8748–8763, 2021.

[20] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022.

[21] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In NeurIPS,
pages 68539–68551, 2023.

[22] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. Hugginggpt: Solving ai
tasks with chatgpt and its friends in huggingface. In NeurIPS,
pages 38154–38180, 2023.

Evaluate the updated LLMs in a new VQA task

Instruction: Do you think
the table is rectangular?
Desirable answer: Yes

Generated program :
Step1: BOX0=LOC(image=IMAGE,object='table')
Step2: IMAGE0=CROP(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question=
'Is the table rectangular?')
Step4: ANSWER1=EVAL(expr="'yes' if {ANSWER0}
== 'yes' else 'no'")
Step5: FINAL_RESULT=RESULT(var=ANSWER1)

Generated program:
Step1: BOX0=LOC(image=IMAGE,object='table')
Step2: IMAGE0=CROP(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question=
'What shape is the table?')
Step4: ANSWER1=EVAL(expr="'yes' if {ANSWER0}
== 'rectangular' else 'no'")
Step5: FINAL_RESULT=RESULT(var=ANSWER1)

Intermediate result:
Step1: BOX0: [[40, 240, 581, 479]]
Step2: IMAGE0: a table set with a white
table cloth and red plates
Step3: ANSWER0: rectangle
Step4: ANSWER1: no
Step5: FINAL_RESULT: no

intermediate result:
Step1: BOX0: [[40, 240, 581, 479]]
Step2: IMAGE0: a table set with a white
table cloth and red plates
Step3: ANSWER0: yes
Step4: ANSWER1: yes
Step5: FINAL_RESULT: yes

W/o updating LLMs

Input image

W/ updating LLMs

LOC result CROP result

Reflection for LLMs in a VQA task
Instruction: Are there any windows in the picture that are not rectangular?
Human Feedback: The correct answer is no
Our wrong answer: yes

Critique:
Error Location: Plan and Program. Reason: In Step3 of the Program,
the subquestions should ask 'Are the windows rectangular?', instead of
asking 'What shape is the window?'. LLMs need to be updated.

Input
image

Generated program:
Step1: BOX0=LOC(image=IMAGE,object='windows')
Step2: IMAGE0=CROP(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question='What shape is the window?')
Step4: ANSWER1=EVAL(expr="'yes' if {ANSWER0} != 'rectangular' else 'no'")
Step5: FINAL_RESULT=RESULT(var=ANSWER1)

Intermediate results:
Step1: The coordinate of BOX0: [[184, 105, 335, 142]]
Step2: The description of IMAGE0: a photography of a window
Step3: ANSWER0: rectangle
Step4: ANSWER1: yes
Step5: FINAL_RESULT: yes Step3

VQA
result

Step1
LOC

result

Step2
CROP
result

rectangle

Step4
EVAL
result

yes

Instruction: Are there any
windows in the picture that are not
rectangular?
Desirable answer: no
Our wrong answer: yes
Generated program: …
Critique:
Error Location: Plan and
Program. Reason: In Step3 of the
Program, the subquestions should
ask 'Are the windows
rectangular?', instead of asking
'What shape is the window?'.
LLMs need to be updated.

Saved as in-
context examples
to update LLMs

LLMs

Update LLMs

Reflection for LLMs in a knowledge tagging task

Instruction: Tag two logos of Spanish football clubs in Seville.
Human Feedback: It does not tag on the correct logo, and the tagged
labels are also not correct.

Generated program:
Step1: OBJ0=LOC(image=IMAGE,object='logo')
Step2: LIST0=LIST(query='Spanish football clubs',max=20)
Step3: LIST1=LIST(query='Seville',max=2)
Step4: OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=LIST1)
Step5: IMAGE0=TAG(image=IMAGE,object=OBJ1)
Step6: FINAL_RESULT=RESULT(var=IMAGE0)

Intermediate results:
Step1: The coordinate of BOX0: [[138,13,263,138], [185,172,312,307],…]
Step2: LIST0: ['Real Madrid', 'Barcelona', 'Atlético Madrid', 'Sevilla',
'Valencia', 'Villarreal', 'Athletic Bilbao', 'Real Sociedad', 'Real Betis',
'Espanyol', 'Celta Vigo', 'Granada', 'Osasuna', 'Alavés', 'Mallorca', 'Leganés',
'Eibar', 'Getafe', 'Valladolid', 'Levante‘]
Step3: LIST1: ['Seville', 'Spain']
Step4: OBJ1: [[138,13,263,138], [185,172,312,307]]
Step5: FINAL_RESULT: [[138,13,263,138], [185,172,312,307]]

Step2
LIST
result

['Real Madrid', 'Barcelona', 'Atlético
Madrid', 'Sevilla', 'Valencia', 'Villarreal',
'Athletic Bilbao', 'Real Sociedad', 'Real
Betis', 'Espanyol', 'Celta Vigo',
'Granada', 'Osasuna', 'Alavés',
'Mallorca', 'Leganés', 'Eibar', 'Getafe',
'Valladolid', 'Levante‘]

Step3
LIST
result

['Seville', 'Spain']

Seville

Spain

Step5
TAG
result

Step1
LOC

result

Input
image

Step4
CLASSIFY

result

Critique:
Error Location: Plan and Program. Reason: In Step2 and Step3, the
program asked GPT to list "Spanish football clubs in Seville", instead of
"Spanish football clubs’ and “Seville” separately.

Instruction: Tag two logos of
Spanish football clubs in Seville.
Human Feedback: : It does not
tag on the correct logo, and the
tagged labels are also not correct.
Generated program: …

Critique:
Error Location: Plan and
Program. Reason: In Step2 and
Step3, the program asked GPT to
list "Spanish football clubs in
Seville", instead of "Spanish
football clubs’ and “Seville”
separately.

Saved as in-
context examples
to update LLMs

LLMs

Update LLMs

Instruction: Tag logos of two Russian Internet
companies that are good at sarch engine and email.

Evaluate the updated LLMs in a new knowledge tagging task

Generated program :
Step1: OBJ0=LOC(image=IMAGE,object='logo')
Step2: LIST0=LIST(query='Russian Internet companies
that are good at search engine and email',max=2)
Step3:
OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=
LIST0)
Step4: IMAGE0=TAG(image=IMAGE,object=OBJ1)
Step5: FINAL_RESULT=RESULT(var=IMAGE0)

Generated program:
Step1: OBJ0=LOC(image=IMAGE,object='logo')
Step2: LIST0=LIST(query='Russian Internet companies',max=20)
Step3: LIST1=LIST(query='good at search engine and
email',max=2)
Step4: OBJ2=CLASSIFY(image=IMAGE,object=OBJ0,categories=
LIST1)
Step5: IMAGE0=TAG(image=IMAGE,object=OBJ2)
Step6: FINAL_RESULT=RESULT(var=IMAGE0)

Intermediate result:
Step1: OBJ0:
[[265,197,389,325],…]
Step2: LIST0: ['Yandex’,…]
Step3: LIST1: ['Google', 'Yahoo']
Step4: OBJ1: [[71,225,191,277],
[20,48,254,136]]
Step4: …

intermediate result:
Step1: OBJ0:
[[265,197,389,325],…]
Step2: LIST0: ['Yandex', 'Mail.ru']
Step3: OBJ1: [[265,197,389,325],
[20,48,254,136]]
Step4: …

W/o updating LLMs

W/ updating LLMs

Figure 16. Case studies of updating LLMs.

Instruction: Create a color pop of Mayan pyramid
Human Feedback: Make the color pop on a wrong object (the blue sky),
rather than the Mayan pyramid.
Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='Mayan pyramid')
Step3: IMAGE0=COLORPOP(image=IMAGE,object=OBJ1)
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Reflection for the SELECT model in an image editing task

Intermediate results：
Step1: The coordinate of OBJ0: [[0, 0, 599, 301], [0, 309, 599, 369], [0, 224,
599, 324], [0, 89, 590, 339]]
Step2: The coordinate of OBJ1: [[0, 89, 590, 339]]
Step3: The description of IMAGE0: a photography of a pyramid in a field
with a cloudy sky
Step4: The description of FINAL_RESULT: a photography of a pyramid in a
field with a cloudy sky
Critique:
Error location: functions called by programs. Reason: In the Step2 of
the program, the used function 'SELECT' failed to select the object of the
Mayan pyramid correctly. ‘SELECT’ function need to be updated.

Input image

Step1: SEG results

Step2: SELECT results

Step3: COLORPOP results

Instruction: Create a color pop of Mayan pyramid

W/o updating the SELECT model

Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query= ‘Mayan pyramid’)
Step3: IMAGE0=COLORPOP(image=IMAGE,object=OBJ1)

W/ updating the SELECT model

Input image Step1: SEG result Step2: SELECT result Step3: COLORPOP
result

Update the SELECT model in a new image editing task

Input image Step1: SEG result Step2: SELECT result

SELECT

Train prompts
for the SELECT
model

Search data from the Internet

Update the SELECT model

W/o updating the SELECT model

Instruction: Hide Timothy Donald Cook ‘s face with cartoon smiling face
Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE, object=OBJ0,query='Timothy Donald Cook’)
Step3: IMAGE0=EMOJI(image=IMAGE, object=OBJ1,emoji='face_with_tongue')

W/ updating the SLECT model

Input image Step1: FACEDET result Step2: SELECT result Step3: EMOJI result

Input image Step2: Selected result

Evaluate the updated SELECT model in a new image editing task

Step1: FACEDET result Step3: EMOJI result

Instruction: Hide Timothy Donald Cook’s face with cartoon smiling face
Human Feedback: It hides the wrong face, it is on the face of another
person, instead of Timothy Donald Cook.

Reflection for the SELECT model in an image editing task

Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query=' Timothy Donald Cook ')
Step3: IMAGE0=EMOJI(image=IMAGE,object=OBJ1,emoji=‘ face_with_tongue')
Step4: FINAL_RESULT=RESULT(var=ANSWER0)

Intermediate results:
Step1: The coordinate of OBJ0: [[415, 45, 514, 180], [458, 112, 479, 139],…]
Step2: The coordinate of OBJ1: [458, 112, 479, 139]
Step3: The description of IMAGE0 a photography of two men standing next
to each other in front of a crowd

Critique:
Error: functions called by programs. Reason: In Step2 of the program,
the function 'SELECT' failed to select the face of Timothy Donald Cook
correctly. ‘SELECT’ function need to be updated.

Input
image

Step1
FACEDET

result

Step2
SELECT

result

Step3
EMOJI
result

SELECT

Train prompts
for the SELECT
model

Search data from the Internet

Update the SELECT model

Step3: COLORPOP

Figure 17. Case studies of updating the SELECT tool.

Input image Step2: CROP Step3: LOC
W/o updating the LOC model

Instruction: Is there a bottle on the left side of the draw bar box?
Generated program:
Step1: BOX0=LOC(image= IMAGE,object='draw bar box')
Step2: IMAGE0=CROP_LEFTOF (image=IMAGE, box=BOX0)
Step3: BOX1=LOC(image= IMAGE0,object='bottle')
Step4: ANSWER0=COUNT(box=BOX1)
Step5: ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
Step6: FINAL_RESULT=RESULT(var=ANSWER1)

Evaluate the updated SEG model in a new image editing task

W/ updating the LOC model

Instruction: Are there any bottles on the cement floor?
Human Feedback: the correct answer is yes
Our wrong answer: no

Reflection for the LOC model in the VQA task

Generated program:
Step1: BOX0=LOC(image=IMAGE,object=‘cement floor ')
Step2: IMAGE0=CROP(image= IMAGE,box=BOX0)
Step3: BOX1=LOC(image= IMAGE0,object='bottle')
Step4: ANSWER0=COUNT(box=BOX1)
Step5: ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
Step6: FINAL_RESULT=RESULT(var=ANSWER1)

Critique:
Error Location: functions called by programs. Reason: In Step3 of the program,
the used function 'LOC' failed to locate the bottle in the given image, as the
obtained result of BOX1 is empty. As a result, in Step4, the program counts the
number as 0. This led to the wrong answer in Step5, where the answer is
determined as no.

Intermediate results:
Step1: The coordinate of BOX0: [[2, 247, 637, 477]]
Step2: The description of IMAGE0: a photography of a puddle with some bottles.
Step3: The description of BOX1:
Step4: The description of ANSWER0: 0
Step5: The description of ANSWER1: no
Step6: The description of FINAL_RESULT: no

Input image

Step1 LOC result

Step2 CROP result

Search data from the LVIS dataset

Update the LOC model

Instruction: What color is the sign below the antenna?

W/o updating the LOC model

Generated program:
Step1: BOX0=LOC(image=IMAGE,object=‘antenna’)
Step2: IMAGE0=CROP_BELOW(image=IMAGE,box=BOX0)
Step3: ANSWER0=VQA(image=IMAGE0,question='What color is the sign?’)
Step4: FINAL_RESULT=RESULT(var=ANSWER0)

W/ updating the LOC model

Input image Step1: LOC result Step2: CROP result Step3: VQA result

None

Prediction: red

Prediction: green

Input image Step1: LOC result Step2: CROP result Step3: VQA result

Evaluate the updated LOC model in a new VQA taskReflection for the LOC model in the VQA task

Instruction: Is there any antenna?
Human Feedback: the correct answer is yes
Our wrong answer: no

Critique:
Error Location: functions called by programs. Reason: In Step1 of the program, the used function
'LOC' failed to locate the antenna in the given image, as the obtained result of BOX0 is empty. As a
result, in Step2, the program counts the number as 0. This led to the wrong answer in Step3, where the
answer is determined as no.

Input image

Step1 LOC result
None

Generated program:
Step1: BOX0=LOC(image=IMAGE,object='antenna ')
Step2: ANSWER0=COUNT(box=BOX0)
Step3: ANSWER1=EVAL(expr="'yes' if {ANSWER0} > 0 else 'no'")
Step4: FINAL_RESULT=RESULT(var=ANSWER1)

Intermediate results:
Step1: Result of BOX0 is empty
Step2: Result of ANSWER0: 0
Step3: Result of ANSWER1: no
Step4: Result of FINAL_RESULT: no

Update the LOC model

Train prompts for
the LOC model

Search data from the LVIS dataset

LOC

Step2 COUNT result
0

Step3 EVAL result
no

None no

Step3 LOC result
None

Step4 COUNT result
0

Step5 EVAL result
no

Step1: LOC Step4: COUNT

0

Step6 EVAL

Input image Step2: CROP Step3: LOC

yes

Step1: LOC Step4: COUNT

1

Step6 EVALTrain prompts for
the LOC model

LOC

Figure 18. Case studies of updating the LOC tool.

W/o updating the REPLACE model

Instruction: Replace Anne Hathaway with Havanna Winter
Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='Anne Hathaway')
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='Havana Winter')

Evaluate the updated REPLACE model in a new image editing task

W/ updating the REPLACE model

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Instruction: Replace Natalie Portman with Havanna Winter
Human feedback : Havanna Winter in the new generated image is wrong

Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='Natalie Portman')
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='Havana Winter')
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Intermediate results:
Step1: The coordinate of OBJ0: [[8, 0, 178, 225]]
Step2: The coordinate of OBJ1: [[8, 0, 178, 225]]
Step3: The description of IMAGE0: a photography of a woman with a hat and
a dress
Step4: The description of FINAL_RESULT: a photography of a woman with a
hat and a dress

Critique:
Error Location: functions called by programs. Reason: In the Step3 of the
program, the used function 'REPLACE' failed to generate an image of
Havanna Winter to replace Anne Hathaway correctly.'REPLACE’ function
need to be updated.

Input image

Step1 FACEDET result

Step2 SELECT result

Step3 REPLACE result

REPLACE

Train prompts for
the REPLACE
model

Search data from the Internet

Reflection for the REPLACE model in an image editing task Update the REPLACE model

W/o updating the REPLACE model

Instruction: Replace the lion with a Asio otus
Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='lion',category=None)
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='Asio otus')

Evaluate the updated REPLACE model in a new image editing task

W/ updating the REPLACE model

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Instruction: Replace the bird with Asio otus
Human feedback : The Asio otus in the new generated image is wrong

Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='bird',category=None)
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='Asio otus')
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Intermediate results:
Step1: The coordinate of OBJ0: [[0, 0, 639, 399], [294, 358, 639, 399], [252,
62, 449, 395]]
Step2: The coordinate of OBJ1: [[252, 62, 449, 395]]
Step3: The description of IMAGE0: a photography of a green bird perched on
a branch in the woods
Step4: The description of FINAL_RESULT: a photography of a green bird
perched on a branch in the woods

Critique:
Error Location: functions called by programs. Reason: In the Step3 of the
program, the used function 'REPLACE' failed to generate an image of
Havanna Winter to replace Anne Hathaway correctly.'REPLACE’ function
need to be updated.

Input image

Step1 SEG result

Step2 SELECT result

Step3 REPLACE result

REPLACE

Train prompts for
the REPLACE
model

Search data from the Internet

Reflection for the REPLACE model in an image editing task Update the REPLACE model

Figure 19. Case studies of updating the REPLACE tool.

Reflection for the CLASSIFY model in a knowledge tagging task

Instruction: Tag the face of Marta
Human Feedback: The label of Marta is tagged on a wrong person.

Generated program:
Step1: OBJ0=LOC(image=IMAGE,object='painting')
Step2: OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=‘The Old Guitarist’)
Step3: IMAGE0=TAG(image=IMAGE,object=OBJ1)
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Intermediate results:
Step1: The coordinate of OBJ0: [[11, 17, 158, 177], [179, 16, 332, 176], [351, 17, 621, 176]]
Step2:The coordinate of OBJ1: [[485, 193, 609, 450]]
Step3: The description of IMAGE0: a photography of a bunch of paintings that are on a
white background
Step4: The description of FINAL_RESULT: a photography of a bunch of paintings that are
on a white background

The Old Guitarist

Critique:
Error Location: functions called by programs. Reason: In Step3 of the
program, the used function 'CLASSIFY' failed to classify the painting of the The
Old Guitarist. ‘CLASSIFY’ function need to be updated.

Input image

Step1 LOC result

Step2 CLASSIFY result

Step3 Tagging result

Evaluate the updated CLASSIFY model in a new knowledge tagging task

Input image Step1: LOC result Step2: LIST result Step3: CLASSIFY result
W/o updating the CLASSIFY model

Instruction: Tag one painting of Pablo Picasso drawed in 1903, which describes a old guitarist.
Generated program:
Step1: OBJ0=LOC(image=IMAGE,object='painting')
Step2: LIST0=LIST(query='paintings of Pablo Picasso drawed in 1903, describes a old
guitarist',max=1)
Step3: OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=LIST0)
Step4: IMAGE0=TAG(image=IMAGE,object=OBJ1)

'The Old Guitarist'

Step4: TAG result

The Old Guitarist

Input image Step1: LOC result Step2: LIST result Step3: CLASSIFY result
W/o updating the CLASSIFY model

'The Old Guitarist' The Old Guitarist

CLASSIFY

Train prompts for
the CLASSIFY
model

Update CLASSIFY model

Reflection for the CLASSIFY model in a knowledge tagging task Evaluate the updated CLASSIFY model in a new knowledge tagging taskUpdate CLASSIFY model

Instruction: Tag the painting of The Old Guitarist
Human Feedback: The painting of is tagged on a wrong object.

Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=‘Marta’)
Step3: IMAGE0=TAG(image=IMAGE,object=OBJ1)
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Input image

Intermediate results:
Step1: The coordinate of OBJ0: [[145, 56, 214, 164],[387, 56, 461, 152],[330, 53, 392, 174]]
Step2: The coordinate of OBJ1: [[387, 56, 461, 152]]
Step3: The description of IMAGE0: a photography of a group of women soccer players
celebrating a goal
Step4: The description of FINAL_RESULT: a photography of a group of women soccer
players celebrating a goal

Marta

Step1 LOC result

Step2 CLASSIFY result

Step2 Tagging result

Step4: TAG result

Critique:
Error Location: functions called by programs. Reason: In Step3 of the
program, the used function 'CLASSIFY' failed to classify Marta. ‘CLASSIFY’
function need to be updated.

CLASSIFY

Train prompts for
the CLASSIFY
model

Instruction: Tag Brazilian female athlete who has won six Miss World Footballers
Generated program:
Step1: OBJ0=FACEDET(image=IMAGE)
Step2: LIST0=LIST(query='Brazilian female athlete who has won six Miss World
Footballers',max=1)
Step3: OBJ1=CLASSIFY(image=IMAGE,object=OBJ0,categories=LIST0)
Step4: IMAGE0=TAG(image=IMAGE,object=OBJ1)

Input image Step1: LOC result Step2: LIST result Step3: CLASSIFY result
W/o updating the CLASSIFY model

'Marta'

Input image Step1: LOC result Step2: LIST result Step3: CLASSIFY result
W/o updating the CLASSIFY model

Step4: TAG result

Step4: TAG result
Marta

'Marta' Marta

Figure 20. Case studies of updating the CLASSIFY tool.

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result
W/o updating the SEG model

Instruction: Replace the wreath with a swimming ring.
Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='wreath')
Step3: IMAGE0=REPLACE (image=IMAGE, object=OBJ1, prompt = 'swimming ring')

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Evaluate the updated SEG model in a new image editing task

W/ updating the SEG model

Instruction: Replace the wreath with a bracelet.
Human Feedback: The image is completely new generated, and the
background is changed.

Reflection for the SEG model in an image editing task

Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='wreath')
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='bracelet')
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Critique:
Error Location: functions called by programs. Reason: In the Step1 of the
program, the used function 'SEG' failed to segment the wreath correctly. ‘SEG’
function need to be updated.

Intermediate results:
Step1: The coordinate of OBJ0: [[0, 0, 499, 498]]
Step2:The coordinate of OBJ1: [[0, 0, 499, 498]]
Step3: The description of IMAGE0: a photography of a bracelet with a silver bead and a
wooden background
Step4: The description of FINAL_RESULT: a photography of a bracelet with a silver
bead and a wooden background

Input image

Step2 SELECT result

Step3 REPLACE result

SEG

Train prompts for
the SEG model

Search data from the LVIS dataset

Update the SEG model

Step1 SEG result

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result
W/o updating the SEG model

Instruction: Replace the air conditioner with a wooden box
Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='air conditioner')
Step3: IMAGE0=REPLACE (image=IMAGE, object=OBJ1, prompt = 'wooden box')

Input image Step1: SEG result Step2: SELECT result Step3: REPLACE result

Evaluate the updated SEG model in a new image editing task

W/ updating the SEG model

Instruction: Replace the air conditioner with a wooden box
Human Feedback: The image is completely new generated, and the
background is changed.

Reflection for the SEG model in an image editing task

Generated program:
Step1: OBJ0=SEG(image=IMAGE)
Step2: OBJ1=SELECT(image=IMAGE,object=OBJ0,query='air conditioner')
Step3: IMAGE0=REPLACE(image=IMAGE,object=OBJ1,prompt='wooden box')
Step4: FINAL_RESULT=RESULT(var=IMAGE0)

Critique:
Error Location: functions called by programs. Reason: In the Step1 of the
program, the used function 'SEG' failed to segment the air conditioner correctly.
‘SEG’ function need to be updated.

Intermediate results:
Step1: The coordinate of OBJ0: [[0, 0, 139, 139], [109, 70, 126, 119]]
Step2:The coordinate of OBJ1: [[0, 0, 139, 139]]
Step3: The description of IMAGE0: a photography of a picture of a window with a
picture of a person
Step4: The description of FINAL_RESULT: a photography of a picture of a window with
a picture of a person

Input image

Step2 SELECT result

Step3 REPLACE result

SEG

Train prompts for
the SEG model

Search data from the LVIS dataset

Update the SEG model

Step1 SEG result

Figure 21. Case studies of updating the SEG tool.

[23] Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Vi-
sual inference via python execution for reasoning. In ICCV,
pages 11888–11898, 2023.

[24] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang,
Zecheng Tang, and Nan Duan. Visual chatgpt: Talking,
drawing and editing with visual foundation models. arXiv
preprint arXiv:2303.04671, 2023.

[25] Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu
Li, and Ying Shan. Gpt4tools: Teaching large language
model to use tools via self-instruction. In NeurIPS, pages
71995–72007, 2023.

[26] Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin,
Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu, Ce Liu,
Michael Zeng, and Lijuan Wang. Mm-react: Prompting
chatgpt for multimodal reasoning and action. arXiv preprint
arXiv:2303.11381, 2023.

[27] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. ICLR, 2021.

	. Framework of CLOVA
	. Comparisons with related methods
	. Prompt Examples
	. In-context examples
	. Prompts in inference
	. Prompts in reflection
	. Prompts in learning

	. Details of Tool update
	. Update VQA tool
	Model
	Training
	Inference

	. Update LOC tool
	Model
	Training
	Inference

	. Update SEG tool
	Model
	Training
	Inference

	. Update SELECT and CLASSIFY tools
	Model
	Training
	Inference

	. Update REPLACE tool
	Training
	Inference

	. More Experimental Results
	. Training-validation prompt tuning for the VQA tool
	. Evaluation on the online setting
	. More case studies

