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Supplementary Material

Overview. The supplementary material has the follow-
ing contents:

• Coarse stage implementation details
• Fine stage implementation details
• Compare with TeCH
• More visual comparison
• Geometry Evaluation
• User Study

A. Coarse Stage Details
Pre-Process Given a single image of a specific person, we
first adopt the off-the-shelf background removal tool from
https://github.com/danielgatis/rembg to
attain the human foreground mask M. Based on the fore-
ground mask M, we create an RGBA image with 648×648
resolution and make sure that the valid human region occu-
pies approximately 70 % of the image’s height, ensuring it
remains centered.

Besides the mask, we also need the reference image nor-
mal map. In practice, we employ the designed normal esti-
mator N from ECON[53]. Note that, N is conditioned with
an optimized SMPL normal map. Therefore, our optimized
geometry also incorporates the human pose information.

Camera Setting. For the coarse stage, we optimize the neu-
ral radiance field(NeRF)[32] with 128×128 resolution. The
goal of the coarse stage is to supply a coarse geometry with
a roughly accurate human pose and boundary for back view
synthesis stage and fine stage. The elevation and azimuth
degree of the reference image is set to 0. as default.

For the camera setting during Score Distillation Sam-
pling, the elevation range is set to [-30◦, 60◦], and the az-
imuth range is set to [-180◦, 180◦]. The camera distance is
set to 3.8 as default, camera field of view (FOV) is set to
20◦ which is aligned with Zero-1-to-3[25].

3D Representation. We employ a multi-resolution hash
grid from Instant-NGP[33] as the 3D NeRF representation.
We use 16 levels of hash dictionaries of size 219, each en-
try is with a dimension 2 feature vector. The 3D grid res-
olution range from 24 to 212 with an exponential growth
rate of 1.447. A two-layer tiny MLP with 64 hidden units
is adopted to decode the concatenated features interpolated
from Instant-NGP to RGB color and volume density. The
background is a “white” solid color background. We sample
512 points along each ray.
Text Prompt. The text is set by ourselves with a pre-
defined text prompt template. We just need to change some

keywords in the template according to the input image in-
formation.

Score Distillation Sampling. We sample images with a
batch size of 4 each iteration for Score Distillation Sam-
pling. We sample the timestep t ∼ U(0.2, 0.6), the
classifier-free guidance weight is set to 5.

The overall Lcoarse loss for the coarse stage can be
formulated as a combination of Lz123

sds , Lmask, Lrgb and
Lnormal:

Lcoarse = λ1Lz123
sds + λ2Lrgb + λ3Lnormal + λ4Lmask

(9)
where in practice λ1 = 1.0, λ2 = 1000, λ3 = 1000,

λ4 = 1000, some additional constrain like density sparsity
and normal smoothness are also employed during optimiza-
tion. We optimize the coarse stage using Adam optimizer
for 3000 steps with a learning rate 5×10−3.

B. Fine Stage Details
Geometry Optimization. We adopt DMTet[45] in the fine
stage, a hybrid SDF-Mesh representation, the DMtet reso-
lution is set to 256×256×256.

The overall Lgeo
fine loss for the coarse stage can be formu-

lated as a combination of Lz123
sds , Lmask, Lrgb and Lnormal:

Lgeo
fine = λ1Lnormal + λ2Lmask + λ3Llap + λ4Lsmooth

(10)
where Lsmooth is the mesh normal constraint, Llap is

the mesh laplacian constraint. In practice λ1 = 10000,
λ2 = 50000, λ3 = 1000, and λ4 = 1000. We optimize
the geometry stage using Adam optimizer for 3000 steps
with a learning rate 1×10−2. In steps 2000∼3000 step, λ3

and λ4 are set to 100 for more human geometry details.

Texture Field. We employ another multi-resolution hash
grid to represent the texture field. We use 14 levels of hash
dictionaries of size 219, each entry is with a dimension 2
feature vector. Same as the coarse stage, the 3D grid res-
olution ranges from 24 to 212. A two-layer tiny MLP with
64 hidden units is adopted to decode the concatenated fea-
tures to RGB color. The background is a “white” solid color
background.

Camera Setting. The camera setup of the fine stage is simi-
lar to the coarse stage except that the elevation degree range
is [-45◦, 45◦] and the image resolution is 648×648.

Score Distillation Sampling. We sample images with a
batch size of 1 for each iteration for SDS. For Zero-1-to-
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Figure 8. Qualitative comparison with TeCH[16]results on THuman2.0 and SSHQ dataset. Compared with TeCH, our methods have
a consistent texture with input images. Row 1&3 are TeCH results, Row 2&4 are our results. Please Zoom in for the details.

3 SDS, we sample the timestep t ∼ U(0.2, 0.6), and the
classifier-free guidance weight is set to 5. For Stable Dif-
fusion SDS, we sample the timestep t ∼ U(0.02, 0.5), and
the classifier-free guidance weight is set to 50.

The overall Ltex
fine loss for the coarse stage can be for-

mulated as a combination of Lz123
sds , Lsd

sds, Lrgb and Lvpc:

Ltex
fine = λ1Lz123

sds + λ2Lsd
sds + λ3Lrgb + λ4Lvpc (11)

where in practice λ1 = 0.002, λ2 = 0.5, λ3 = 10000, λ4 =
10. We optimize the texture stage using Adam optimizer
for 4000 steps with a learning rate 1×10−3. To maintain the
front/back view details and generate consistent side view
texture, we optimize another 2000 steps with λ1 = 0, λ2 =
0, λ3 = 10000, λ4 = 100.

C. Compare with TeCH
TeCH[16] is our concurrent work, which is also an
optimization-based method that employs Score Distillation
Sampling during the optimization process. As can be ob-

served in Figure 8, TeCH tends to predict a floating human
pose and always exhibits a misaligned texture in the hand
region. Most importantly, as shown in the back view, TeCH
shows an unreasonable texture compared with the input im-
age in terms of texture pattern, texture style, and wrong pre-
diction of the hat in the back head region.

D. More visual comparison
We provide more visual results in Figure 9 on THuman2.0
dataset and Figure 10 on SSHQ dataset. Please Zoom in For
more details.

E. Geometry Evaluation
We employ the commonly used Chamfer Distances and
Volume IoU to evaluate the geometry quality on THuman
dataset. We utilize all 30 cases for evaluation. For fair com-
parison, we align the shapes of all methods to a unified scale
and origin. Chamfer is calculated between the vertices of
the predicted mesh and ground truth 3D scan. The size of



Figure 9. Qualitative comparison results on THuman2.0 dataset. Compared with them, our methods can render texture-consistent and
high-fidelity novel views.

the voxel grid during IoU calculation is set to 64×64×64.
Although our primary goal is not to achieve precise geo-
metric reconstruction but high-quality texture synthesis and
renderings, quantitative results in Table 3 indicate that our
geometric outcomes outperform all the competing methods.
We don’t show the concurrent work TeCH results here due

to its more than 4 hours of training time for each case with
2 A100 GPUs.

Method PIFu PaMIR Magic123 Ours
Chamfer ↓ 0.0206 0.0182 0.0251 0.0177
IoU ↑ 0.5072 0.5391 0.4328 0.5626

Table 3. Geometry evaluation



Figure 10. Qualitative results on SSHQ dataset. Compared with them, our methods can render texture-consistent and high-fidelity novel
views.

F. User Study.

Using CLIP as the evaluation metric is inspired by recent
papers in image-to-3D generation, such as Magic123. They
use CLIP to evaluate visual quality and image consistency
between the input and novel view. We also provide user
study results in Table 4, showing the percentages of user

preference. The participants are given multi views and
asked to choose the best method in image quality and tex-
ture consistency respectively.

Method Magic123 PIFu PaMIR TeCH Ours
Quality (%) ↑ 8.15 4.35 7.61 10.87 69.02
Consistency (%) ↑ 8.70 5.98 12.50 3.26 69.57

Table 4. User study of preference
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