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1. Smooth Regularization analysis
The impact of τ on the adaptative entropy loss (Eq. (3))
and smooth regularization process are discussed in detail.
Suppose that there are ni classes seen within task i. gj =
σj(ℓi/τ) and ρj = σj(ℓi) refer to the probabilities of the
jth class based on different logits. Therefore, Eq. (3) can be
rewrite as,

Le(i) =− < σ(ℓi/τ), log(σ(ℓi)) >

= −
ni∑
j=1

gj log ρj .
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where ρn = 1 −

∑ni−1
j=1 ρj . The impact of this gradient on

ρj is,

ρj := ρj −
∂Le(i)

∂ρj
. (c)

Given that the gradient from gj , i.e., σ(ℓj/τ), are blocked
and does not flow back, gj = ρj and gni = ρni when τ = 1

and the corresponding gradient ∂Le(i)
∂ρj

are all zeros. There-
fore, the smooth regularization will be turned off. More
importantly, the proposed loss of Eq. (3) has the desired
smoothing effect by setting τ > 1. Specifically, when ρj
reaches a large value, e.g. close to 1, gj

ρj
will be smaller

than gni

ρni
, resulting in positive gradients to lower ρj down.

In contrast, if ρj reaches a small value, for example close to
0, gj

ρj
will be greater than gni

ρni
, resulting in negative gradi-

ents to lift ρj .
Intuitive alternatives to Smooth Regularizations Two
smoothing techniques are proposed and compared with
ours. The first technique provides an evenly distributed la-
bel (EDL), 1

ni
on each entry, as the supervision. Its learning

Table A. Results of different regularization methods on 10-task
continual learning of Split StanfordCars.

Last-acc ↑ Avg-acc ↑
EDL 39.73 50.93
ROH 40.99 51.59
Ours 66.77 76.81

objective becomes,

Le(i) = − <
1

ni
, log(σ(ℓi)) > . (d)

Another smoothing baseline involves the one-hot label δ by
randomly activating a category entry. This smoothing tech-
nique is denoted random one-hot, ROH, with cross-entropy
objective,

Le(i) = − < δ, log(σ(ℓi)) > . (e)

Comparisons between the proposed smooth regulariza-
tion and the alternative ones are shown in Table A. Our ap-
proach outperforms the two baseline methods by a signifi-
cant margin.

2. Recent relevant methods
SLCA [2] and HiDe-Prompt [1] handle the classifier in-
consistency with a post-hoc alignment technique to boost
performance. Both methods involve storing the mean and
covariance of each class feature and constructing Gaussian
distributions for each class. Subsequently, unified clas-
sifiers are retrained by sampling features generated from
these Gaussian distributions. However, saving the covari-
ance of each class feature incurs significant memory over-
head, particularly considering the sensitivity of continual
learning to memory usage. Notably, our proposed classifier
consistency learning approach only introduces regulariza-
tion without requiring additional memory overhead.

3. Analysis of the FF score
According to the FF score computation

FFt =
1

t− 1

t−1∑
j=1

{ max
i∈{1,...,t−1}

(ai,j)− at,j},∀j < t, (f)

all at,j over the 20 tasks in Table 1 can be depicted as
in Figure A , where CPrompt and L2P (with the best
FF score) are compared. The maxi∈{1,...,t−1}(ai,j) of
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Figure A. Detailed illustration of FF score. All at,j values are
recorded and presented with a heat map. The deeper the red, the
higher the value. Best viewed in colors and zoom-in for the values.

CPrompt are larger than those of L2P, as the diagonal area
of CPrompt shows deeper red than that of L2P, resulting in
larger differences and thus higher FF of CPrompt. More-
over, CPrompt achieves superior overall performance and
stability-plasticity trade-off, as Figure A suggests.

4. More results with our approach

As shown in Table B, PCL and CCL consistently improve
various backbones with clear margins.

Table B. Continual learning results of the Split StanfordCars 10-
task. The improvements over the backbone are shown in red. L:
Last-acc, A: Avg-acc.

Method CODAPrompt L2P
L A L A

Backbone 62.24 73.28 60.39 71.92
+CCL 65.12+2.88 75.37+2.09 63.69+3.30 72.53+0.61
+PCL 63.49+1.25 74.21+0.93 61.82+1.43 72.06+0.14
+BOTH 65.31+3.07 75.81+2.53 63.71+3.32 72.71+0.79

5. Resource consumption

Memory usage of a method is evaluated by the number
of trainable parameters. Its computational requirement is
evaluated by FLOPs. As shown in Table C, the proposed
method consumes both resources at relatively low levels.

Table C. Different methods’ computation and memory consump-
tion on Split StanfordCars 10-task.

Method Ours ESN L2P Dual CODA
Params (×106) 0.92 30.49 0.78 0.44 89.79
FLOPs (×109) 23.62 23.97 23.62 23.62 33.77

References
[1] Liyuan Wang, Jingyi Xie, Xingxing Zhang, Mingyi Huang,

Hang Su, and Jun Zhu. Hierarchical decomposition of
prompt-based continual learning: Rethinking obscured sub-
optimality. Advances in Neural Information Processing Sys-
tems, 36, 2024. 1

[2] Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen,
and Yunchao Wei. Slca: Slow learner with classifier alignment
for continual learning on a pre-trained model. arXiv preprint
arXiv:2303.05118, 2023. 1


	. Smooth Regularization analysis
	. Recent relevant methods
	. Analysis of the FF score
	. More results with our approach
	. Resource consumption

