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Abstract

Neural network pruning, particularly channel pruning,
is a widely used technique for compressing deep learning
models to enable their deployment on edge devices with
limited resources. Typically, redundant weights or struc-
tures are removed to achieve the target resource budget.
Although data-driven pruning approaches have proven to be
more effective, they cannot be directly applied to federated
learning (FL), which has emerged as a popular technique
in edge computing applications, because of distributed and
confidential datasets. In response to this challenge, we de-
sign a new network pruning method for FL. We propose
device-wise sub-networks for each device, assuming that the
data distribution is similar within each device. These sub-
networks are generated through sub-network embeddings
and a hypernetwork. To further minimize memory usage and
communication costs, we permanently prune the full model
to remove weights that are not useful for all devices. During
the FL process, we simultaneously train the device-wise sub-
networks and the base sub-network to facilitate the pruning
process. We then finetune the pruned model with device-wise
sub-networks to regain performance. Moreover, we provided
the theoretical guarantee of convergence for our method.
Our method achieves better performance and resource trade-
off than other well-established network pruning baselines, as
demonstrated through extensive experiments on CIFAR-10,
CIFAR-100, and TinylmageNet.

1. Introduction

Machine learning algorithms often rely on large amounts of
data, but privacy restrictions can prevent data from being
easily shared across different organizations. For instance,
hospitals may have isolated data that are limited in size
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and cannot be used to train a high-quality model with good
predictive accuracy. Collaboration between organizations to
train a machine learning model on their combined data can
lead to better results, but sharing data is often not possible
due to privacy policies and regulations [1]. This problem of
‘data islands’ is not limited to hospitals and can be found in
other areas such as finance, government, and supply chains.
Federated learning [42, 49, 74] has emerged as a popular
research topic in the machine learning and computer vision
communities as a solution to these issues.

Convolution Neural Networks (CNNs) have achieved re-
markable success in various computer vision tasks[35, 56,
61], but to address real-world challenges, recent CNNs have
become wider and deeper, leading to improved performance
on various benchmarks. However, this increased capacity
comes at the cost of higher computational and storage re-
quirements, which prohibit CNNs from being deployed on
edge devices. Consequently, numerous efforts [17, 55] have
been made to reduce the size of CNNss to enable their deploy-
ment on mobile and embedded devices. Among different
directions, weight pruning [18] and structural pruning [38]
are two major ways to reduce the model size. Network
pruning methods have achieved promising results. However,
most existing methods do not consider heterogeneous (non-
iid) local data distributions. Instead, they upload local data
to the server to train and prune the model based on the whole
dataset.

There are several existing works [21, 27, 37, 52, 60]
on network pruning under non-iid local data distribu-
tions. These methods mainly focus on weight pruning.
SCBFwP [60] tries to perform channel pruning under non-iid
data distributions, but they mostly rely on channel norms as
the importance score, and they did not show how to scale
their method to larger CNNs. Our method is designed to
perform channel pruning given a certain computational bud-
get (measured in FLOPs) on each device. Because, unlike
weight pruning, channel pruning can achieve acceleration
and compression without any post-processing steps.

Previous research [22, 76] show that data-driven pruning



approaches often perform much better than using a fixed
criterion (like channel norm [38]). Inspired by this result,
we propose to discover the proper sub-network following
the guidance of local data distributions. Specifically, we
divide the learning of sub-networks into two parts. In the
first part, we design a server-side sub-network, which is
used to serve as a base model for device-wise sub-network.
Ideally, weights that are not useful for any device will be re-
moved from the server-side sub-network. In the second part,
device-side sub-networks will be adaptively generated for
each device. The device-side sub-network will be pruned to
meet the specific resource requirement for each device. Both
the server-side sub-network and device-side sub-networks
are generated by mapping the device id(s) into the network
embedding space. The embedding for each sub-network will
then be fed into a hypernetwork [16] to generate the corre-
sponding structure. The hypernetwork and the embedding
are trained together through gradient-based optimization
algorithms in a federated fashion. To control the commu-
nication costs brought by training the hypernetwork, we
set the fraction of update steps for the hypernetwork to be
small. So that the overhead of training these sub-networks
is not large. In addition, to improve the training efficiency
given the limited update budget, we perform iterative train-
ing of model weights and the hypernetwork, which makes
the hypernetwork adapt to changes in model weights. The
training process of our method may pose challenges to the
convergence of the model. We show that our method can be
converted into a bi-level optimization problem under the FL.
setting. We further provide the theoretical convergence guar-
antee showing that our method can converge to a stationary
point. The contribution of this work can be summarized as
follows:

* We proposed a novel channel pruning method for feder-
ated learning. A server-side network and device-wise sub-
networks are learned to achieve a better trade-off between
the performance and the computational resource.

* We proposed to use an embedding layer and a hypernet-
work to generate sub-networks on each device. As a result,
no sub-network structure needs to be stored for each de-
vice.

* We provided the theoretical guarantee of convergence for
our method for federated learning by reformulating our
method as a bi-level optimization problem.

* Extensive experiments on CIFAR-10, CIFAR-100, and
TinyImageNet show the effectiveness of our method
across different models like ResNet-56, ResNet-18/34,
and MobileNet-V2.

2. Related Works

Federated Learning. Federated learning (FL) is a new kind
of distributed learning approach that involves a server coor-
dinating a group of clients/devices to learn a model. In FL,

at each epoch, devices retrieve the model from the server,
train the model locally for several steps, and then upload
the updated model back to the server. The server aggregates
the updates from devices to update the global model. FL
presents several challenges that need to be addressed for
effective implementation. Firstly, devices in FL often have
different data distributions. Various methods are proposed
to solve the data heterogeneity [20, 29, 43, 44, 51, 58, 82].
Second, the communication between devices and the server
is expensive and is a critical bottleneck in FL training. Com-
pression techniques are applied in FL to reduce the com-
munication [24, 30, 45, 57, 64, 68], Finally, although in FL,
the server does not have access to the user data, model in-
version attack [15] is shown to recover the user information
based on the model updates. Cryptography techniques are
applied to improve the privacy of FL, such as homomorphic
encryption [39, 53], differential privacy [49] and multiparty
secure computation [66] etc.. In addition to the challenges
discussed, there are several other challenges in FL, such as
fairness and model interpretability, a more comprehensive
review of FL can be found in [28, 42].

Network Pruning. (1) Regular Setting. Most network
pruning methods assume they can easily access all samples
without restrictions. Early works [18, 38] simply use L;
or Lo norm to measure the importance of weights or struc-
tures. Calculating norms does not require samples, and it
can be seamlessly extended to the FL setting. However, the
performance of these methods is often worse than meth-
ods [11, 22, 76] that require samples for pruning. One
direction of data-driven pruning methods relies on batch
normalization (BN) [23] layers since BN is popular for the
design of recent CNNs [19, 59]. These methods utilize the
scaling factor of BN to indicate which channels are impor-
tant. Liu et al. [46] use sparse regularization on the scaling
factors of BN to prune channels, where a channel is pruned
if its corresponding scaling factor is small. Pruning methods
that involve BN are effective. However, BN layers can pose
challenges in the FL setting due to the varying data distribu-
tion across devices, leading to significant differences in BN
layers’ running mean and variance. Another research direc-
tion frames channel pruning as a constrained optimization
problem [8—14, 32, 76]. In this direction, learnable parame-
ters are utilized to control each channel, and these parameters
are end-to-end differentiable, allowing for gradient-based
optimization methods. Since these methods do not rely on
BN layers, they can potentially be extended to the FL setting.
Alongside advancements in vision, Natural Language Pro-
cessing (NLP) has significantly progressed, demonstrated by
key studies [62, 72, 77-81]. Concurrently, structure pruning
has emerged as a method to improve the efficiency of large
language models, as shown in recent research [67].

(2) Non-iid Setting. Without specialized treatment, regu-
lar pruning methods can impose strong biases in pruned mod-
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Figure 1. An overview of our proposed method. We first generate network embeddings for server-side and device-side sub-networks
given their ids. We then use them as the inputs to the hypernetwork to produce the corresponding sub-networks. We then optimize the

hypernetwork given loss functions on each device.

els because of heterogeneous (non-iid) local data distribu-
tions. Shao et al. [60] employs local training with a full-size
model to discard unimportant channels (measured in channel
norms) on devices. FedPrune [52] guides pruning based
on updated activations. LotteryFL [37] iteratively prunes
a full-size model on devices. PruneFL [27] reduces local
computational costs by finer pruning a coarse-pruned model.
ZeroFL [54] partitions weights into active and non-active
weights and stores sparsified weights and activations for
backward propagation, and it also needs to store non-active
weights and dense gradients. Bibikar et al. [3] employs mask
adjustment on devices and sparse aggregation and magnitude
pruning on the server to generate a new global model. The
FedTiny [21] approach incorporates an adaptive batch nor-
malization (BN) selection module, which adaptively obtains
an initially pruned model that can better fit deployment sce-
narios. Most aforementioned methods focus on weight-level
pruning/sparsity, often requiring high communication costs
to compute importance scores for all parameters. On the
other hand, our method learns the channel configuration of
each layer, which is less resource-demanding.

Federated Bilevel Optimization. Our channel pruning
can be viewed as a federated bilevel optimization problem
(FedBiO). The general FedBiO problem has been studied in
the literature [65, 71, 75]. FedNest [65] studied the general
nested federated problems with FedBiO being a special case,
and it utilized variance reduction to tackle the heterogeneity
of lower level problems; simFBO [71] and FedBiOAcc [41]
adapts the single loop bilevel optimization problems to the
federated learning setting. Some applications in FL can
be viewed as bilevel optimization problems, such as noisy
labels [40] and communication-efficient FL [41].

3. Method

3.1. Notations

We will first introduce our notations before formally de-
scribing our method. In a convolutional neural network
(CNN), the feature map of the Ith layer is denoted by
Fi € RO>WixHi where C) represents the number of chan-
nels, and H; and W; represent the height and width of the
current feature map. L denotes the total number of layers in
the CNN. For simplicity, we ignore the mini-batch dimension
of feature maps in our notation.

3.2. Federated Learning Setting

We first describe the federated learning problem considered
in this paper. In the FL setting, we train a neural network
on N local datasets D,,, n € {1,2,3---, N}. Through this
paper, the data distribution on local devices is heterogeneous.
To train a neural network in this setting, we want to optimize
the following optimization problem:

N
1
%DN;E(WDR)’ (1)

where W is the weights of the CNN, and L is the objective
function. One common method to minimize communication
costs is by using local stochastic gradient descent (SGD),
where the local device performs several update steps with
their local data before averaging the model weights V. Fe-
dAvg [49] is a popular algorithm that adopts this approach.

3.3. Generate Sub-network Architectures

To prune a model, we need to first generate the corresponding
sub-network architectures. To achieve this goal, we use a
binary vector a € {0,1} to represent whether to keep or
prune a channel. To facilitate the learning of the sub-network
architecture, we use a hypernetwork [16] (HN) to generate
the architecture vector a:

a= HN(G; QHN)a (2)



where e is the network embedding of the corresponding
device or server, which will be discussed later, and Ay is
the parameters of the HN. We use Straight-Through Gumbel-
Sigmoid [25] to enable gradient calculation for the HN. To
control the pruning of each channel, we apply a to the feature
map of each layer:

Fi=a0F, 3)

where F; is the feature map after applying a; (the archi-
tecture vector of [th layer). Note that we insert a; after
normalization and activation layers, which correspond to
control the output channels of the previous convolution layer
and input channels of the next convolution layer.

An alternative approach to control pruning is to add learn-
able parameters for each channel. However, this approach
presents challenges in the context of FL. If we only train a
single sub-network for compression, local parameters must
be accumulated on the server. Using individual learnable
parameters for each channel may result in significantly dif-
ferent parameters across devices due to the non-iid setting,
rendering the final parameters meaningless (often close to
0.5 before binarization). Additionally, if we aim to learn
device-wise sub-networks for pruning, we would need to
train N sets of parameters for all devices, making it unclear
how to share knowledge between devices.

3.4. Architecture Embedding for Server and Device
Side Sub-networks

Our method aims to find the appropriate server-side sub-
network and device-side sub-networks. The server-side
sub-network serves as the weight bank for device-side sub-
networks. In addition, it reduces the communication and
training costs at the finetuning stage and alleviates the mem-
ory burden on each device. Device-side sub-networks are
used to meet the resource constraint of each device at the
inference time, assuming the training and test data distri-
bution on each device are similar. Using HN potentially
provides a unique opportunity to share knowledge between
server-side and device-side sub-networks. To achieve this,
we introduce an embedding layer to produce the embedding
for each sub-network:

€n = Emb(na 9Emb)a n = 03 T 7N7 (4)

where Og, is the parameters of the embedding layer Emb,
and n is the index for each device. In addition, we let n = 0
represent the embedding for the server-side sub-network.
By putting Eq. 2 and Eq. 4 together, we can generate the
server-side sub-network and device-side sub-networks by
using:

a” = HN(Emb(0; fmb); v,
a” = HN(Emb(n; 0gmp); Oun), n=1,--- | N,

Algorithm 1: Learning Server-side and Device-side
Sub-networks

Input: D,, D3 .ps, pi, A\, S, K, rw, 1o, TeN

Initialization: kyn = 0.

broadcast the current state of the CNN

for k :=11t0 K do

/* Training the CNN. Freeze 6 of the

HN. */

for For each device in parallel do

1. Calculate gradients w.r.t to the loss function
defined in Eq. 7.

2. Update local CNN weights using the preferred
optimizer.

end

* Server updates of the CNN. */

. if & % rw = 0 then
Randomly sample S devices,

average states of the CNN and broadcasts the
updated states.
/* Training the HN. Freeze W of the
CNN. */
if £ % ruy = 0 then
for For each device in parallel do
1. Calculate gradients w.r.t § given the loss

function defined in Eq. 6.
2. Update local HN weights (including Emb)
using the preferred optimizer.

[SSEN

end
/* Server updates of the HN. */

3. if kuy % 7o = O then
Randomly sample S devices,

average states of the HN and broadcasts the

updated states.
4. kHN = k‘HN + 1

end
Pruning the model with resulting a°, and fine-tuning it.

where a’ is the server-side sub-network and a™ are device-
side sub-networks. The embedding layer is used more fre-
quently in natural language processing [50], but it well suits
our task since it can covert the device id into a corresponding
sub-network by combining Emb and HN.

3.5. Channel Pruning for Federated Learning
Given the aforementioned settings, we can now formally
introduce the objective function for channel pruning. The
channel pruning problem can be viewed as a constrained
optimization problem, where the constraint is used to control
the computational resource of the sub-network. The channel
pruning objective function can be formulated as follows:

N
] 1 a, 0 n
min 3 2 LOV, Dija® 0a") ©)
N
AR, psTow) + = 3 RIT (@ ©a"), 5 T
s 17 s+ total N y 17 d + total 9

n=1



where 6 contains both Oy and Oy, a° and a” are gener-
ated by using Eq. 5, D% is a subset of the local datasets
D,,, R is the regularization loss to control the FLOPs of the
sub-network, ps € (0, 1] is a predefined hyperparameter to
control the preserved FLOPs of the server-side sub-network,

€ (0,1], n=1,---, N are also predefined hyperparam-
eters to control the FLOPs of sub-networks on each device,
T(a%) or T'(a® ® a™) is the current FLOPs decided by the
sub-network architecture a® or a® ® a”, and Tioy is the
total FLOPs of the CNN. The FLOPs constraint R(x, y)
is generally a regression problem, but regular regression
loss functions, like MAE and MSE, can hardly push R to
near zero values. We let R(x,y) = log(w) to push
‘R to be close to 0. In addition, we exphc1tly require that
if a channel is pruned by the server-side sub-network, the
corresponding device-side sub-networks should not update
the corresponding position, and the detail is shown in the
supplementary materials.

We perform iterative updates between model weights
and the sub-network architectures. When updating model
weights, we use the following equation:

N
: 1 . A0 n
I%HNZE<W’D"’E‘ ®a"). (7

n=1

When training model weights, we freeze the sub-networks
generated by the HN, and when training the HN, we also
freeze W.

The overview of our method is shown in Fig. 1. The
algorithm of training our method for one epoch is shown
in Alg. 1. In Alg. 1 D,, and D2 are local datasets and their
sub-set for training the HN. ) is the hyperparameter to con-
trol FLOPs constraints, S is the number of sampled devices,
K is the number of iterations within one epoch, ryy is the
state average interval for the CNN, 7y is the state average
interval for the HN, ryN decides the frequency of training
the HN. To control the communication and the additional
training costs, we introduce three hyperparameters: ryy, 79
and ryN. 7w, Tg controls the communication costs for train-
ing the model and the HN. Larger )y and ry will reduce
the communication costs, but it may also negatively affect
the quality of the final model and generated sub-networks
under the FL setting. rgn controls the overall training costs
brought by HN. Similarly, larger rgy results in smaller addi-
tional training costs, but it makes the training of HN harder
since the difference of model weights is larger between con-
secutive training iterations of the HN. We follow Mime [31]
for averaging states of the optimizers.

3.6. Theoretical Guarantee of Convergence

The objective of channel pruning is finding an optimal sub-
network such that the FLOPs constraint is satisfied and the
model performance is maximized. In fact, channel pruning in
our setting can be viewed as a federated bilevel optimization

problem [63, 69]. More formally, we combine Eq.(6) and
Eq. (7) to have:

mln h(6

N
Z Wy, D2;a° © a™)

+A(R(T(a a"), pg Lot

N
1
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From a bilevel’s perspective, we do channel pruning by
iteratively performing the following steps until convergence:
for a given sub-network structure from the HN and Emb,
we first find the optimal model weight V(solving the lower
level problem in Eq. (8)); then we optimize the sub-network
based on this optimal model weight(solving the upper level
problem in Eq. (8)). Finding the optimal model weight is
expensive, especially for modern deep neural networks; we
instead optimize the HN and Emb weights 6 and the model
weight WV alternatively as in Alg. 1. Furthermore, the gradi-
ent w.r.t the sub-network structure includes both a direct part,
which is the direct gradient w.r.¢ 6, and an indirect part due
to Wy is a function of  (the minimizer of the lower level
problem). However, the indirect gradient is expensive to
evaluate and leads to minor empirical improvement in prac-
tice, so we only consider the direct gradient when updating
in Alg. 1. The convergence of our alternative update method
is guaranteed under mild assumptions [26, 73] as stated in
Theorem 3.1 below:

Theorem 3.1. Suppose we choose the upper level learning
rate ) and the lower level learning rate 7y as:

, 1 WNA, \ 2
= min
" 4[/7”97 KHNLCT2 ’
! AN\
TEMN I\ KN L202 ’

then we have:
1
of ————
((bNKHN)l/Q)

where b is the mini-batch size, N is the number of devices,
and Ky is the number of update steps to the upper level
variable 0.

and

1 Kpn—1

> E[VA(Oky)|? =
Kun oy

As stated in Theorem 3.1, our algorithm converges to
a stationary point of Eq. (8), with a convergence rate of
O(K 5% N %). Furthermore, the algorithm achieves linear speed
up w.r.t the number of devices and mini-batch size.



Method Dataset Architecture Base Acc | A-Acc Acc J FLOPs (D) | | FLOPs (S)
Filter Pruning [39] 0.93% | 90.29% 50% 50%
FedOSP 0.28% | 90.94% 50% 50%
FedILP CIFAR-10 | ResNet-56 | 91.22% | )y oeq | 91 14% 50% 50%
DWNP +0.66% | 91.88% 50% 20%
Filter Pruning [38] -1.31% | 65.26% 50% 50%
FedOSP 0.61% | 65.96% 50% 50%
FedILP 0.20% | 66.37% 50% 50%
DWNP +1.74% | 68.31% 50% 20%

" Filter Praning [35] | ResNet-18 | 66.57% | 552, " 64.05% |~ 70% 1~ 70%
FedOSP -1.79% | 64.78% 70% 70%
FedILP 1.44% | 65.13% 70% 70%
DWNP CIFAR-100 +0.05% | 66.62% 70% 50%
Filter Pruning [39] 122% | 67.83% 50% 50%
FedOSP 20.29% | 68.76% 50% 50%
FedILP ResNet-34 1 69.05% | (440, | 69.49% 50% 50%
DWNP +2.17% | 71.72% 50% 20%
FedILP . 0.22% | 66.64% 8% 8%
DWNP MobileNet-V2 | 66.76% | 1 469, | 68.22% 48% 20%

Table 1. Results of CIFAR-10 and CIFAR-100. ‘Base Acc’ represents the baseline training accuracy. ‘A-Acc’ represents the accuracy
changes before and after pruning. ‘Acc’ represents the accuracy after pruning. ‘| FLOPs (D)’ and ‘| FLOPs (S)’ represent the pruned

FLOPs of device-side and server-side sub-networks.

Architecture | Method Base Top-1 Acc | Base Top-5 Acc | A Top-1 Acc | A Top-5 Acc | | FLOPs (D) | | FLOPs (S)
Filter Pruning [38] 1.01% 0.33% 50% 50%
FedOSP 0.18% +0.48% 50% 50%

ResNet-18 | poqrp 34.99% 78.60% +0.07% +0.65% 50% 50%
DWNP +1.06% +1.10% 50% 20%
Filter Pruning [38] -0.91% -0.21% 50% 50%
FedOSP -0.20% +0.21% 50% 50%

ResNet-34 | poarp 36.32% 79.37% -0.03% +0.34% 50% 50%
DWNP +0.80% +0.74% 50% 20%

Table 2. Comparison results on TinyImageNet with ResNet-18/34. ‘Base Top-1/5’ represents the baseline training Top-1/5 accuracy. ‘A
Top-1/5 Acc’ represents the Top-1/5 accuracy changes before and after pruning.

4. Experiments
4.1. Settings

Datasets and Models. We use CIFAR-10 [34], CIFAR-
100 [34], and TinyImageNet [6, 36] to evaluate the perfor-
mance of our method. Our method uses ps and pj; to control
the FLOPs for the server and each device. In the experiment
section, we assume pj; has the same value for different de-
vices for a fair comparison with other methods. The detailed
choices of p, and p; are listed in supplementary materials.
‘We choose ResNets [19] and MobileNet-V2 [59] for com-
parison. For CIFAR-10, we compare our method with other
baselines on ResNet-56. For CIFAR-100, we compare our
method with other baselines on ResNet-18, ResNet-34, and
MobileNet-V2. For TinyImageNet, ResNet-18 and ResNet-
34 are used for comparisons. To reduce the negative effects
caused by batch normalization layers, we replace batch nor-
malization with layer normalization [2], which has been used
frequently in recent designs of vision transformers [7] and
CNNs [47]. For the main experiments, we consider N = 10
devices. We use the Dirichlet distribution with o« = 0.5, as
described in [48], to create non-iid partitions on the devices
for all datasets. Other settings of [V and « are also verified
for specific models and datasets. As described in section 3,

we assume the training and test datasets on each device are
similar. To accomplish this, we apply a random permutation
to the samples drawn from the Dirichlet distribution for the
training dataset and then split the test dataset based on the
permuted samples. As a result, the training and test datasets
distributions on each device are similar but not the same.
More details are given in the supplementary materials. Base-
lines. In addition to the proposed method, we also build three
baselines from the literature on channel pruning. (1) Filter
Pruning: we directly adapt the Filter Pruning [38] to the FL
setting, where there are no communication costs for pruning.
In this setting, pruning is purely based on the channel norm
of the weights. (2) FedOSP (Federated One-Shot Pruning):
this baseline can be seen as an improved version of channel
pruning methods with differentiable gates [11, 32, 76] in the
one-shot pruning setting. In this setting, we use the HN to
generate one sub-network for all devices. The HN is learned
in a one-shot setting when model weights are frozen. (3)
FedILP (Federated Iterative-Learning and Pruning): this
baseline can be seen as the simplified version of our method
without device-side sub-networks. Through the experiment
section, our method is abbreviated as DWNP (Device-Wise
Network Pruning). For all settings, we report the mean
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N =10 N =25 N =50
Method Base Acc Base Acc Base Acc
66.37% 65.37% 64.88%
FedILP
-0.20% -0.49% -0.25%
(v, (v, (v
WD 66.57% 6331% 65.86% 63.09% 65.13% 57 58%
+1.74% +2.23% +2.45%

Table 3. Performance of pruned models given different numbers of
devices N with ResNet-18 on CIFAR-100.

results across three runs.

Training Settings. We describe the hyperparameters in
Alg. 1 in this section. For all methods, we let S = N,
A=2.0,rny =5,1r9g = 2and ryy = 10. K is the number
of iterations for training one epoch. For Filter Pruning and
FedOSP, we train a base model for 200 epochs, and this
base model also servers as the baseline model in Tab. 1 and
Tab. 2. For FedILP and DWNP, we train the model and the
hypernetwork from scratch for 200 epochs. For FedIPL and
DWNP, we start the training of the hypernetwork after i of
the total training epochs, which avoids misleading pruning
results when weights are not properly trained. We finetune
the model for 200 epochs for all methods to recover the
performance. For each local dataset, we sample 10% of the
training samples to construct D2. When updating the local
W, we use SGD with momentum 0.9 and a start learning
rate 0.1. When updating the local 6, we use Adam [33] with
a start learning rate of 103, Other training details are shown
in the supplementary materials.

4.2. Results

CIFAR-10/CIFAR-100. We tested different settings on
CIFAR-10 and CIFAR-100 and found that our method
DWNP consistently achieved the best performance across
different model architectures and pruning rates. Specifically,
DWNP outperformed the original model by 0.66%, 1.74%,
2.17%, and 1.46% for ResNet-56, ResNet-18, ResNet-34,
and MobileNet-V2, respectively. This demonstrated that
the design of device-wise sub-networks is beneficial for
achieving a good trade-off for channel pruning under the
federated learning setup. Our method even surpassed the
original model when pruning 70% of FLOPs on ResNet-
18. The relative ranking of other baselines is Filter Pruning,

. a=0.5 a=0.1 a = 0.05
Method | Architecture Base Acc Base Acc Base Acc
(7 0 0]
Sl PO
-0.20% -0.55% -1.11%
WP ResNet-18 | 66.57% 5331% 63.22% 5i51% 61.61% 5359%
+1.74% +1.29% +0.98 %
69.49% 66.46% 63.54%
FedILP
+0.44% -0.31% -0.98%
WP ResNet-34 | 69.05% 7% 66.77% 68.20% 64.52% 6553%
+2.17% +1.43% +1.01%

Table 4. Performance of pruned models given different choices of
« with ResNet-18/34 on CIFAR-100.

FedOSP, and FedILP. Our method achieved a prominent
trade-off between performance and computational costs on
more complex datasets, like CIFAR-100, with an improve-
ment of 0.05%~2.17% over the original model when prun-
ing 50% FLOPs or more. The performance of our method
on MobileNet-V2 demonstrated that it could be seamlessly
extended to lightweight models.

TinyImageNet. We present the results of ResNet-18
and ResNet-34 on TinyImageNet in Tab. 2. DWNP is
1.06%/1.10% better than the original model regarding the
Top-1/5 accuracy for ResNet-18. For ResNet-34, the ad-
vantage is 0.80%/0.74% regarding the Top-1/5 accuracy.
The advantage of our method compared to other baselines
is still obvious, which ranges from 1.13% ~ 2.07% and
0.45% ~ 1.75% for A Top-1/5 accuracy for ResNet-18. We
have similar observations for ResNet-34.

Across all settings, FedILP often performs better than
FedOSP, indicating that learning model weights and archi-
tectures simultaneously are beneficial, as explained in sec-
tion 3.6. In general, data-driven approaches perform better
than pruning methods based on channel norms, suggesting
that local data distributions should be considered explicitly
when pruning under the FL setting. Indeed, the performance
gain of DWNP is not free. For the server-side sub-network,
the FLOPs reduction for DWNP is much smaller than other
methods, and DWNP has to occupy more storage space on
the server.

Other Settings. To verify whether our method can perform
well in other settings, we change IV and « to create different
FL settings. In the first experiment, we use ResNet-18 on
CIFAR-100 to verify whether our method can achieve sim-
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Figure 3. (a, e): normalized FLOPs regularization loss values for the server-side sub-network. (b, f): normalized FLOPs regularization loss
values for device-side sub-networks. (d, h): test accuracy given different choices of run. (d): communication costs. (h): trade-off between
server-side and device-side sub-networks. Experiments are conducted on CIFAR-100 with ResNet-18 and when pruning 50% FLOPs (a,b,c)

and 70% FLOPs (f,g,h) on devices.

ilar performance when changing the number of devices N.
From Tab. 3, we can see the A-Acc is increased given more
devices, which shows that our method is more resilient when
increasing the number of devices N. On the other hand,
the A-Acc of FedILP is similar or worse when increasing
the number of devices, probably because the learning of the
sub-network becomes harder when increasing N. In Tab. 4,
we show the results when changing o on ResNet-18/34. A
smaller « represents more diverse local data distributions
and is often harder for model training. The table shows that
both DWNP and FedILP are affected by decreasing . How-
ever, DWNP can still maintain a positive performance gain
for both ResNet-18/34. We plot the layer-wise pruning rate
for channels with different «v in Fig. 2. It can be seen that the
sub-network architecture changes when changing local data
distributions. For high heterogeneity (o« = 0.05), DWNP
prefers to perverse more later layer channels, which is plau-
sible because feature maps of later layers are more diverse
on each device. In addition, the early stages of the model
are not well utilized by device-side sub-networks. On the
one hand, it is reasonable since CNNs tend to learn uniform
representations from early stages. On the other hand, maybe
we can add constraints to encourage the utilization of early
stages or adjust the server-side sub-network so that it can be
better used.

Detailed Analysis. We examine how ryyN changes the train-
ing dynamics during the optimization process. The training
of model weights is not the focus of our paper, so we did
not study 7. The effect of ry is not obvious compared to
ran. We present our study in Fig. 3. We plot the first 50
epochs for regularization loss values after the training of
HN begins. As described in the settings 4.1, the training of

HN starts after 50 epochs of model weights training. We
test 4 settings of run: {5,10,20,30}. In short, our method
performs well when ryn < 10. We can see an obvious per-
formance drop when ryn = 30. We also plot the overall
communication costs for W and 6 in Fig. 3d, and the red
dashed line represents the costs for ¥V only. For rgny > 10,
the communication overhead from training the HN becomes
marginal. As a result, rgy = 10 provides a good trade-off
between performance and additional communication costs.
In Fig. 3h, we show the trade-off between the model per-
formance and the server-side FLOPs when pruning 50% of
FLOPs on devices with ResNet-18 on CIFAR-100. We can
see that our method can maintain a good performance when
the remained server-side FLOPs are larger than 75%.

5. Conclusion

In this paper, we proposed a new channel pruning method
under the Federated Learning settings. Specifically, we gen-
erate device-side sub-networks from the server-side sub-
network through a hypernetwork and a network embedding
layer for device-wise pruning. Our method can be opti-
mized in an end-to-end differentiable fashion, which is very
efficient. In addition, the extra communication costs and
training costs for the hypernetwork and the embedding layer
can be easily controlled using only two hyperparameters.
Furthermore, we establish a theoretical guarantee of conver-
gence, affirming that our method converges to a stationary
point. Our method achieves competitive performance on
CIFAR-10, CIFAR-100, and TinyImageNet datasets with
ResNets and MobileNet-V2.
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A. Proof for the convergence of Algorithm 1

In this section, we study the convergence rate of Algorithm 1. We first simplify the notations of objective functions:
LM W;0) = LW, D,,;a ® a™) and

R (W, 0) = LW, Di;a’ @ a™) + A[(R(T (%), psTiow) + R(T(a° © a"), pf Tioa)]
Next, we make some mild assumptions:

Assumption A.1. The function h("™) (W, #) is possibly non-convex, L-Lipschitz; £ (W, #) is L-Lipschitz, p-strongly
convex w.r.t. YV for any given 6;

Assumption A.2. We have an unbiased stochastic first order derivative oracle with bounded variance o2

Assumption A.3. For any m, j € [N] and z = (z,y), we have: |[VA(™ (W,60) — VAW (W, 6)|| < ¢ and VLI (W, ) —
VLOW, )| < ¢, where ¢, ¢ are constants.

We further assume the total number of update steps to W is K; the total number of update steps to € is K, and
K = rgn K n; the mini-batch size of sEochastic query for both W and € is b; the stochastic query to 6 is denoted as G; we
omit the gradient of Wy w.r.z. 0; we use 6 and WV to denotes the average of 6 and VV across devices. We denote:

N
~ 1
_ ; (™) (- p(n) = — E (n)
Ws argygunN ngzl LYYW, 0, W = arg min LM (W; 0).

nl

since we make infrequent updates to 6, we omit the drift of the lower level solution caused by ¢ update, in other words, we
assume Wy =~ Wp.

A.l. Useful Lemmas

Lemma Ad. Fork € [rynkun,rankan +ran — 1], we have:

B 2 ; _ 2 1 (~0o?
EHWrHNkHN+rHN ~Waiin H <(1-XMy) HN]EHWTHNICHN ~ W, H + 3 ( N +12Lrpwo?A? + 12012y C2>

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. For ease of notation, we denote W* = ngHN in the proof, and follow Lemma 15 and Lemma 16 in [70], for
k€ [runkun,raNkEN +7HN — 1], We have:
V2o
E|[ Wit — W*|? < (1= ME|W — W7 |* + W + 12Lrwo?y® + 12113,y
Telescope for k € [runkun, runkan + run — 1], we have:

EHWTHN/CHNJrTHN - W ? < ?

(1 - )\/Y)THN]EHWTHN]CHN -wr

THNKHN+THN

2
+ Y (L= y)hrehay <7N + 12Lrwo?y3 + 12073,y g2>
k=rgnkaon
_ 1 (~%0
< (1= M)""NE|Wrynkuy — W g pw + 12Lrwo?y® + 12Lr3 43¢ )
This completes the proof. O

Lemma A.5. Suppose iterates HI(CR), n € [N], k € [Kun] are generated from Algorithm 1, we have:

k47, 1 N
o 2 .y (n))|2 20 2 1217 2.2 =2
(1—12L%3 E E E||0, — 0,"]1* < Nrgn —|—8C + + 12Lrywo?y? 4+ 120r3,7%C
= b A bN w

where INC,« € [Kgn) and /;r%rg = 0, and the expectation is w.r.t the stochasticity of the algorithm.



Proof. Suppose we denote k, € [K ] where k,%rg = 0. By Algorithm 1, we have HIS:) = 9,;T

k—1 k—1
0](;1) = 91%7:) — Z ?7G§n) and g_k = éfcr — Z T]Gg.
1=k, =k,

So we have:

where the equality uses the fact 018:) = 5,;’. for k € [K], the inequality uses the generalized triangle inequality. Next,

N N k—1
SO =02 =30 | S (6~ G H <7y Z Z IGE — G2
n=1 n=1 L.

=k, =k,

EHG§" Gy
AR 1
— [ (64 ~ Bel6{)) - 5 X (6 - BelGP) + Eel6l) - 3 S Eelc)
Jj=1 j=1
1 ' 2
< 2EH(G§”> ~E(GY]) - 5 2 (G —EelG))| + 2IEHE5[G§">1 -
j=1

(@)

2 [CRENCR)

2 L 2
+ 28|l - 5 OEelGY)
=1

2
< 2B]|(G4") — B[] + 4EHJE5[G§”>1 VR @)

2

N
- 8IEHVh(")(Gg) — Vh(fy)| + SIEHVh (0¢) — Z GV

(b) 20’ it
o5 +4L2<]E||0 — 0|12 + E|W;, — W, L>||2)

2 8L (pia g2 ()2
+8C%+ == D Elfe — 05717 + E[Ws, - Wy

Jj=1

Average over n € [N], we have:

N

So we have:

k—1 N
202 12712 _ " n
< N7y n2<0+8<§2+ 3 (sz—eé |2+ E[Ws, — W, >||2))

For k # I;;T, we have:

N 2
1 o 202 1212 o 0
>l | < 5 racte S (w - + i - w0

€))



Then we combine with Lemma A .4 to get:

N —
S0y — oi?
n=1

k-1
20?2 12L2 (~o - 12L2
Tg Z n? (b +8¢% + 3 <PYN +12Lryo®y? + 12Lr12,\/yzg2> + i

M=

n

E

-1

< v (22 s+ PR (0T 1oLt 412002422 ) ) + 12L2r0n?
s Nrgn™{ =+ "+ X bN + Twoy” + 12Lr)7°¢ + rom
n=1

Il
I

14

Next, we sum over k, we have:

bN

(Enw _ eé">||2))
1

N —
S E9 - 60|

kr+ro—1 N
1 —12L%2n2 9 E|6,, — 612 < Nrdn? 20’ 82 1217 (70® | 1or 2 19024202
( an®) Y D B0 =6 < NP (S + 8¢+ = i 12Lrwe®y + 32
k=k,. n=1

This completes the proof.
A.2. Descent Lemma
Lemma A.6. Suppose nng < ﬁ Fort € [T, the iterates generated satisfy:
— — ’r] — '[7 —
]E[h(ngNJrl)} < E[h’(ekHN)] - 7]E||Vh’(0kHN)||2 - ZE||E§[GICHN]||2

L217 n _ 772L02
Z(Enem B + B, = Wonsnenn ) + i

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Using the smoothness of h we have:

_ _ _ _ _ L - _

]E[h(akHN-‘rl” < E[h(ekHN)] + E<Vh’(9kHN)’ GkHN"Fl - 0kHN> + EEHHICHN-H - ekHN H2

772L0'2
2bIN

2
a _ _ _ L _
2 Elh(Bin)] ~ nE(VABrn) BelCrnn]) + T EIEe Gy ]I” +
= E[h(Binn)] = SEIVR(Biy)I? + JEIVh(Bryrr) — Eel Gy I

2 2 2
n n°L ~ 5 n’Lo
A

(©) _ _ _
< Elh(Btun)] = FEIVAOrrrr )2 = TE|Ee[ G ]I

N 27 2
77 2 : n n = n Lo
N — (EllekHl\’ 9](<:HN||2 +E||W9k W(THN+1)]CHN||2> + QbN

where equality (a) follows from the update step to the HN in Algorithm 1; (b) uses (a,b) = 3[|lal[* + [|b]|*> — ||a
follows the condition that n;, < 1/(2L) and the smoothness of h (). This completes the proof.

A.3. Proof of Convergence Theorem
We are ready to prove the main theorem 3.1 in this subsection.

Theorem A.7. Suppose we the upper level learning rate n and the lower level learning rate vy as:

] NA, \ '/ i L (20N 1/2}
n= 4Lry’ \ KpnLo? » V= 4L \ Ky L202

= bII?J; ©)
m



then we have:
Kpn—1

_ 2Lo2 A, \ /2 1202 1/2
S B[V )| < (") n (“)

bNKun AMNKpn
kg n=0

1

Kun

where b is the mini-batch size, N is the number of devices

Proof. Combine Lemma A.6, and Lemma A.4 to have:

B[Oy -+1)] < Elh(Orsrn)] = SEI VA ) I? — TE|EelGi I

LQn L*n .
7 2 Bl — 047 1+ =5 (1= 2)"r Ay

711

L2 2 2L0_2
— 12Lrywo%y? + 121 C?
+ (bN + rwoyT + r2 3¢ SO
Next, we sum over kg, and denote Ay = h(6p), we have:
Kgn—1 2 Kpgn—1 N 2
_ L KgnLon
> EIVAG )P < Do+ 55 D0 D Elllry — 05 P+ =

kun

D1 = Ay) A
k)HN:O k}HN—O n=1

KgnL 77( Kunn®Lo®

20N

+

2\

TN + 12Lryo~? + 12Lr12,V72C2) +

Suppose we choose 1 < 4LT . By Lemma A.5, we have:

it YL 202 1212
> ZEII9k—9£”>|2s4Nr§’n2(b+8<2 = (bN +12Lrwo?y? + 12Lr8 42))
k=k, n=1

So we have:

Kpn—1
n

. 1212 ~
2 kz O E||[ VA0, )|I? < Ap + 2K gy L2r2n® (b +8¢2 + N (bN +12Lryo?y? + 12Lr$w?g2>>
HN=

KunL*n
2

KHNL2 o’ 2_2 2 272 KHN772LOr2
—— | — + 12L 12L _—
+ o\ bN + rwoy” + WY CY | + BN

(1= M) Ayy

Multlply

on both sides, we have:

1 Kpn—1

_ 20 202 12L2 ~
E|Vh(0 2 < Y A% 2g? [ = + 8¢ - +12L 2 112072, ~2C?
KHN kl—gzo Hv ( kHN)H — nKHN + 7"077 b + C + )\ bN + TWU + rW’Y C

+ L2(1 = Ay)"N Ay

L? 2.2 2 272 77L(72
+ N (bN + 12Lrywo*y" 4+ 12Lry,y°C* | + N

By ignoring the higher order terms, we have:

1 Kpn—1

_ 20¢ vL?c?  nLo?
—_— E||Vh(0 2 <




By choosing:

, 1 WNAy \ 2 inf 1 AON 1/2}
= min = miny — - — = 5
" ALry’ \ KpynLo? » 7 4L\ Kyn L2062

then we have:

P 9 1/2 2 2 1/2

. ) 2Lo2A L

—— > EIVAB)l’ < <bNJK0> + </\bNIU(>
HN gy =0 AN o

this completes the proof.



Inputsn =0,---, N,
Embedding(N, 32x L), Resize to (L,32)

GRU(32, 64), LayerNorm, ReLU
FC,(64,C)), LayerNorm, [ = 1,--- , L

Outputs a;, [ =1,--- | L

Table 5. The architecture of the embedding and the hypernetwork
used in our method.

B. Experimental Settings

In Tab. 6, we provide the details choices of p, and p};. When
training the base model, we use SGD as the local optimizer
with a start learning rate of 0.1, momentum of 0.9, and
weight decay of 0.0001. The learning rate is decayed to 0.01
and 0.001 at epochs 50 and 100, respectively. We set the
mini-batchsize on each device to be |256/N |, where ||
is the floor function. For FedOSP, we also use the hyper-
network for pruning, and the pruning process is conducted
on the subset DZ. We train the hypernetwork for FedOSP
for 200 epochs with ADAM and a constant learning rate of
0.001. With these settings, the additional costs for training
the hypernetwork for FedOSP and other methods will be
similar. During the finetuning process, we use exactly the
same setting as the base model training process.

We assume the local data distribution on each device is
similar, and we split the test dataset to each device according
to this assumption. In [48], for each class, they sample a
vector v ~ Dir(«), where r is a N (the number of devices)
dimensional vector which lies in a simplex (Zi:l:l vn, = 1).
For each class, we modify this vector by adding random
noise:

v =wv+r, r ~ Uniform(—p, 5). (10)
To satisfy the simplex requirement, we produce the final by
using v = ﬁ In experiments to satisfy our assump-
n=1"n"

tion, we let 8 = 13-

device based on 7.

We then assign test samples to each

C. Details of the Hypernetwork and Embedding

The detailed architecture of the embedding and the hyper-
network is shown in Tab. 5. GRU [4] is used to capture
inter-layer relationships and fully connected layers are used
to capture inter-channel interactions.

After we have the outputs a; from the hypernetwork,
we calculate the binary vectors a; by using the following
equations:

a; = round(sigmoid((a; + g + ¢)/7)), (11)

where g ~ Gumbel(0, 1), and Gumbel is the Gumbel distri-
bution, and c is a constant to make the pruning starts with

Dataset | Architecure | pi [ p,
CIFAR-10 | ResNet56 | 050 | 080
ResNet-18 0.50/0.30 | 0.80/0.60
CIFAR-100 ResNet-34 0.50/0.30 | 0.80/0.60
MobileNet-V2 0.50 0.80

e S

Table 6. Choice of p, and p,.

the whole network. In practice, we set ¢ = 3.0 for all exper-
iments. T is the temperature parameter, which is set to 0.4
for all experiments.

D. Ablation Study
Settings Base Acc | A-Acc Acc J FLOPs (D) | | FLOPs (S)
FedILP -0.20% | 66.37% 50% 50%
DWNP (OS) 66.57% +1.02% | 67.59% 50% 50%
DWNP w/o Eq. 7 N +1.43% | 68.00% 50% 50%
DWNP +1.74% | 68.31% 50% 20%

Table 7. Results of CIFAR-100 with different settings.

In Tab. 7, we add more settings to study the effects of
the design choices. ‘DWNP (OS)’ corresponds to one-shot
pruning for server and device sub-networks. ‘DWNP w/o
Eq. 7° corresponds to not resolving the conflicts between
server and device sub-networks. The one-shot setting results
in 0.72% performance loss, which suggests that co-training
indeed produces a better final model, as we discussed in
section 3.6. The difference between ‘DWNP w/o Eq. 7’
and ‘DWNP’ is not large, but the cost of adding Eq. 7 is
minimal. Thus, the performance gain is nearly free, and it
also suggests that restricting the search space of the device-
wise sub-networks is helpful.

E. Control the Relationship between the Server-
side and Device-side Sub-networks

To better describe the relationship between the server-side
sub-network a® and device-side sub-networks a®, we explic-
itly require that if a channel is pruned by the server-side sub-
network, the corresponding device-side sub-networks should
not update the corresponding position. This is achieved by
stopping gradients if the condition is met:

oL
danli]

=0, if i € Ind(a®), (12)

where we define the index set Ind(a®) to be Ind(a’) =
{i | a®[i] = 0}, which is used to represent the index of
pruned positions given the server-side sub-network. This
constraint is dynamically changed during the learning pro-
cess of sub-networks, but it will become stable in the middle
to the late training stage. The benefits of this constraint
are two-fold. Firstly, it implicitly embeds the relationship



Method Architectures | Time (sec/img) | | Time | | FLOPs (D) | | FLOPs (S)
Original 0.0559 - - -
Filter Pruning 0.0348 37.7% 50% 50%
FedOSP ResNet-18 0.0336 39.9% 50% 50%
FedILP 0.0345 38.3% 50% 50%
DWNP 0.0340 39.2% 50% 20%

Table 8. Inference Time Comparison on TinylmageNet.

Architceture | Method Base Top-T Ace | ATop-TAce | Acc | J FLOPs (D) | | FLOPs (5)
Filtcr Praning 8% | 722A% | 50% 30%
FedOSP 032% | 7320% | 50% 50%
ResNet-18 | peqrp 73.52% 004% | 7348% | 50% 50%
DWNP +1.42% | 7494% | 50% 20%

Table 9. Comparison results on ImageNet-100 with ResNet-18.

between the server-side sub-network and device-side sub-
networks. Secondly, it reduces the potential search space for
device-side sub-networks, which is beneficial for learning
them.

F. ImageNet-100 Results

We use the ImageNet-100 subset to further evaluate our
method following the partition shown in [5]. For ImageNet-
100, We follow the same training setting of other datasets
described in section 4.1, except that we reduced the training
and finetuning epochs to 80 to save computational costs. We
use 8 clients with @ = 0.5 on ImageNet-100. The com-
parison result is shown in Tab. 9. DWNP still consistently
outperforms other baselines like other datasets. This exper-
iment further demonstrates that our method can be easily
scaled up to larger (higher resolution/more samples) datasets.

G. Inference Time Comparasion

We measure the inference time on the CPU with ResNet-
18 on tiny-ImageNet in Tab. 8. The result is obtained by
averaging inference time from 1000 input samples. For
DWNP, the time is further averaged from 10 device-side
sub-networks, and the range of inference time for DWNP is
0.0336 ~ 0.0351 (sec/img). From the table, we can see that
different methods have comparable acceleration rates giving
similar FLOPs on each device.
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