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A. Appendix

In this document, we first provide further derivation of the
proposed method in Sec. A.1. Then we demonstrate the way
to initialize the wavelet and the low memory usage of our
method in practical applications in Sec. A.2 and Sec. A.3,
respectively. Finally, we show more visual comparisons be-
tween the proposed method and state-of-the-art methods in
Sec. A.4.

A.1. Further Derivation on the Proposed Method

For the z-transform X(z) of the input x in Sec. ??, which
undergoes a forward wavelet transform to produce high and
low frequency components with a downsampling factor of
2 can be expressed as,
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After upsampling by a factor of 2, the z-transform of the
reconstructed x is obtained as,
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where X(−z) denotes an aliased signal in the reconstruc-
tion, which is set to cancel its effect,

A0 (−z)S0 (z) +A1 (−z)S1 (z) = 0 (15)

Obviously, that gives another item,

A0 (z)S0 (z) +A1 (z)S1 (z) = 2 (16)

Splicing Eq. 15 and Eq. 16 gives the perfect reconstruc-
tion condition. Using the convolutional property of the z-
transform, the loss function shown in Lwavelet (see Sec. ??)
optimized toward the zeros can be obtained.

A.2. Initialization of Wavelet Convolution

For Kwavelet in Eq. ??, we performed the following exper-
iments using db2 wavelet initialization [10], haar wavelet
initialization [3] and random initialization.

Method PSNR SSIM wavelet kernel size

db2 [10] 32.69 0.931 4×4
haar [3] 32.62 0.931 2×2
random 32.53 0.930 2×2

Table 7. Comparison of results of different initialization wavelet
ways.

As shown in Tab. 7, better accuracy can be obtained
by using subtly constructed classical wavelets for initializa-
tion, which corresponds to the introduction of artificial prior
knowledge. Considering the balance between efficiency and
accuracy, in the specific implementation of MLWNet, we
use haar wavelets for initialization. From the above tables,
it can be seen that the initialization using haar wavelet with
a priori information results in a higher PSNR metric of 0.09
dB compared to random initialization.

A.3. GPU Memory Usage under High-Resolution
Images

In this section, we use a Tesla A40 with 48GB GPU mem-
ory to test the average memory usage on the RSBlur dataset
(the image resolution is approximately 1920×1200). The

1



comparison results with various advanced algorithms are
shown in Tab. 8. It is noted that our method uses only
1.4GB more memory than MIMO-UNet+ [1], and is only
one-fifth of the advanced algorithm FFTformer [5]. Com-
bining Tab. ??, Tab. ?? and Tab. ??, it can be seen that
our proposed MLWNet is able to well balance the accuracy
and model complexity at large resolution, and the smaller
memory allocation also ensures that the algorithm can be
deployed on some GPUs with poorer arithmetic power.

A.4. More Experimental Results

In this section, we provide more visual comparisons of the
proposed method and state-of-the-art ones on RealBlur-J [8]
(see Fig. 9, Fig. 10) and RSBlur [9] (see Fig. 11, Fig. 12,
Fig. 13) datasets.
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Method MIMO-UNet+ MSSNet MPRNet Stripformer GRL FFTformer MLWNet-B(Ours)

GPU memory(GB) 8.5 13.7 21.8 27.5 Out of memory 47.3 9.9

Table 8. Memory comparisons of our method and the advanced algorithms. “GPU memory” denotes the maximum GPU memory con-
sumption that is computed by the“torch.cuda.max memory allocated()” function.

(a) Blurry image (b) DeblurGAN-v2 [6] (c) SRN [11] (d) MIMO-UNet+ [1] (e) MPRNet [15] (f) BANet [13]

(g) Blurry (h) GT (i) MSSNet [4] (j) Stripformer [12] (k) GRL [7] (l) FFTformer [5] (m) Ours

Figure 9. Visualization results for the RealBlur-J [8] dataset. Our proposed MLWNet performs excellently under the conditions of rich
light, shadow, and details.

(a) Blurry image

(b) Blurry (c) GT (d) DeblurGAN-v2 [6] (e) SRN [11]

(f) MIMO-Unet+ [1] (g) MPRNet [15] (h) BANet [13] (i) MSSNet [4]

(j) Stripformer [12] (k) GRL [7] (l) FFTformer [5] (m) Ours

Figure 10. Visualization results for the RealBlur-J [8] dataset. Our proposed MLWNet restores the image closest to GT, and it can be seen
that MLWNet excels in terms of color, sharpening, and details.



(a) Blurry image (b) SRN [11] (c) MIMO-UNet [1] (d) MIMO-UNet+ [1] (e) MPRNet [15]

(f) Blurry (g) GT (h) Restormer [16] (i) Uformer-B [14] (j) SFNet [2] (k) Ours

Figure 11. Visualization results for the RSBlur [9] dataset. Our proposed MLWNet restores the sharpest leg details of fast-moving
pedestrians, which shows that MLWNet still performs well in the difficult motion blur restoration.

(a) Blurry image (b) SRN [11] (c) MIMO-UNet [1] (d) MIMO-UNet+ [1] (e) MPRNet [15]

(f) Blurry (g) GT (h) Restormer [16] (i) Uformer-B [14] (j) SFNet [2] (k) Ours

Figure 12. Visualization results for the RSBlur [9] dataset. Our proposed MLWNet restores the most realistic image in terms of light and
shadow. It can be easily seen that MLWNet has the least retention on residual shadows.



(a) Blurry image (b) SRN [11] (c) MIMO-UNet [1] (d) MIMO-UNet+ [1] (e) MPRNet [15]

(f) Blurry (g) GT (h) Restormer [16] (i) Uformer-B [14] (j) SFNet [2] (k) Ours

Figure 13. Visualization results for the RSBlur [9] dataset. Our proposed MLWNet restores the clearest text details and achieves eye-
pleasing results in noise suppression.
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