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1. Overview

In this supplementary material, we elaborate on the loss
functions, implementation details, datasets, additional re-
sults on the comparisons with different methods, and more
results of free pose and expression editing on wild identi-
ties.

2. Loss Functions

Our model is trained using the self-supervised learning
pipeline with a reconstruction task.
Pixel-wise Loss £,,. The pixel-wise loss is employed to en-
sure the synthesis frame . is similar to the current frame
Te.

Ly =E[|| Zc — zc |u]- (1)
Perceptual Loss £,,. Similar to the existing methods [3, 18,
20, 25], we use a pre-trained VGG [8] to guarantee consis-
tency of high level characteristics between the current frame
z.. and reconstructed frame Z...

£, =B} Y | V6G (&)~ VCE () ). @

where ¢ represents that the frame is downsampled 7 times,
and j is the layer index of the VGG. We employ settings
consistent with existing methods [3, 18, 20, 25], i.e. 7 €
[0,3] and j € [0,4].

GAN Loss Lg, Lp. To make the synthesized frames re-
alistic, we adopt the hinge adversarial loss [11], and two
different scale patch discriminator is used for better perfor-
mance [7].

Lo = ~ED(@.)], )
Lp = E[max(0,1 — D(z.) + max(0,1 + D(Z.)].
Full Objective Function. The total loss of the generation
step is formulated as:

Lg = )\pﬁp + XLy + )\G‘CGa “4)

where \,, A\, and Mg are the weights of loss functions,
which equals to 10, 10 and 1, respectively. The loss of the
discrimination step is formulated as Lp = Lp. We follow
the standard GAN practice [7] during training.

3. Implementation Details
3.1. Model Details

The details of the model structures and sub-modules are
shown in Figure 1. Our encoder-decoder framework mainly
contains four parts, the dense feature encoder Er, the la-
tent token encoder Er, the implicit motion function (IMF)
and the frame decoder Dp, where the IMF is composed
of the latent token decoder IMFp and implicit motion
alignment IMF'y . The ConvLayer [10] block and Styled-
Conv [10] block are directly adopted from the StyleGAN2-
pytorch [16] implementation. The E7 is composed of sev-
eral ResBlocks [4] and downsample blocks, and a multi-
layer perceptron (MLP) is appended to the last, to finally
obtain the latent token representation. The latent token de-
coder IMFp is implemented with a StyleGAN2 [10] gen-
erator, and the latent token . is injected into the layers us-
ing the style modulation operation. For the implicit motion
alignment IMF 4 process, it can be formulated as:

V' = Attention(Q, K, V),

T

= softmax (QK ) V. ©)
Vi

With the aligned values V', we can further refine them using

multi-head self-attention and feed-forward network-based

Transformer blocks [19]. In this work, we use 4 stacked

transformer decoder blocks.

TransformerBlock(xz) = FFN (MultiHeadSA(a:)),

head; = Attention(zWgi, Wiy, tWy),
MultiHeadSA(z) = Cat(head; , heads, . . ., head),)Wo,
FFN(z) = GELU (LN(x)Wl n bl)Wg + by,
GELU(z) = z - ®(x),

where the SA is the self-attention, which takes the out[gg%
from the previous block, Cat is the concatenation operation,
FFN is the feed-forward network, LN is the Layer Normal-
ization [1], GELU [5] is utilized as the activation function

and ®(x) is the cumulative distribution function for Gaus-
sian distribution.
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Figure 1. The detailed architectures of components in our model.

3.2. Datasets Details

Two talking head datasets, i.e., CelebV-HQ [26], and
VFHQ [23], are used in this paper. Apart from facial
datasets, we also utilize three general datasets, i.e., Flower,
Wavecloth, and Foliage. For more details about these three
datasets, please contact us. The resolution of frames is re-
sized to 256 x 256 for all the experiments.

CelebV-HQ. The CelebV-HQ provides more than 35K
video clips with diverse appearances, actions, and expres-
sions, involving more than 15K identities.

VFHQ. The VFHQ dataset is mainly constructed for
video face super-resolution, which contains over 16K high-
fidelity clips of diverse interview scenarios, providing the
highest frame quality among these datasets.

For VFHQ, we follow the approaches used in [23] to
split the training and validation sets respectively, and report
the performance of our model on the validation sets. For
CelebV-HQ, we randomly select 500 videos for validation,

as the official validation split is not provided.
GeneralVideo. We adopt a large-scale text-video dataset.
Please contact us for the detail information of the dataset.
We use the words “flower”, “wavecloth” and “foliage” to
filter the captions to obtain the sub-datasets Flower, Wave-
cloth, and Foliage. Flower sub-dataset contains 50,837
training videos and 89 validation videos. Wavecloth sub-
dataset contains 47,707 training videos and 23 validation
videos. Foliage sub-dataset contains 1,003 training videos
and 118 validation videos. For the foliage experiments, we
first pretrain all the methods on the flower dataset, and then
fine-tune on the foliage dataset.

3.3. Optimization

The codebase for all these experiments is built upon Py-
Torch [14]. The Adam [12] optimizer is adopted with
B1 = 0.5 and B2 = 0.999, and the learning rate policy is set
to 2 x 10~%. The batch size is 64 over 8x32G NVIDIA
Tesla V100 GPUs, in which 8 training samples will be



Reference Current Ref. KP Cur. KP IW [13] IMF

Figure 2. Visualization of IW keypoints and results of IW and IMF.
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Figure 3. Results of using different reference frames.

dispatched to each GPU. All these models are trained un-
til convergence for fair comparisons. The loss wights are
Ap =10, A, =10, and A\¢g = 1.

3.4. Metrics

L1 distance (L.1). To evaluate the reconstruction ability of
models, we compute the mean L, distance, between the
synthesized and driving frames. The values of RGB chan-
nels are normalized to [0, 1].

Peak Signal-to-Noise Ratio (PSNR). The PSNR is used
to measure the image reconstruction quality. PSNR is the
ratio between the maximum possible power of a signal and
the power of corrupting noise that affects the fidelity of its
representation [22].

Structural Similarity (SSIM). SSIM measures the struc-
tural similarity between two image patches. MS-SSIM is
a multi-scale version of SSIM that measures on multiple
scales of the images. We only report the MS-SSIM scores
as it is shown to be more correlated with human perceptions.
Frechet Inception Distance (FID). The FID [6, 15] is used
to evaluate the photo-realism of the synthesized frames.
Learned Perceptual Image Patch Similarity
(LPIPS). The LPIPS [24] metric is an advanced method
for assessing the perceptual similarity between images. It
utilizes deep neural networks to compare image patches,
focusing on human perceptual similarity rather than
pixel-level differences.

4. Additional Analysis
4.1. Limitations of Explicit Representation

We visualized the results of IW [13], which uses attention
but is limited by its use of explicit keypoints from FOMM,
restricting its applicability and generalizability. By contrast,
our IMF, leveraging low-dimensional tokens in latent space
without physical coordinate constraints, enhances motion
representation sparsity and adaptability, thereby improving
video modeling. It ensures semantic integrity while main-
taining sparsity, enhancing the generalizability and ability
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Figure 4. Visualization of the attention map.
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Figure 5. Results of encoder-centric (EC) model and IMF.

to represent a wider range of object movements and behav-
iors, as seen in flower scenarios (Fig. 2).

4.2. Choosing the Reference Frame

Reference frame selection greatly impacts reconstruction
quality, with closer frames typically improving results,
shown in Fig. 3. Currently, we follow previous papers and
also use the first frame for fair comparison. But an adaptive
reference frame selection is more reasonable and we will
research it in the future.

4.3. Visualization of the Attention Map

We add attention map visualization in Fig. 4. It shows our
IMF effectively discerns the correlation between two frames
and identifies new elements like a hand.

4.4. Encoder-centric (EC) or Decoder-centric (DC)

Fig. 5 compares an encoder-centric (EC) model and our DC
model, IMF. It shows EC has poor preservation of face iden-
tity and non-face element, and limited generalizability to
general data. Traditional EC methods require complex en-
coder designs and meticulous tuning during training phases,
while our DC approach places correlation modeling within
the decoder, simplifying model design and avoiding com-
plex turning. Our IMF design also aligns with successful
DC-based Large Language Models (LLMs), and it is ex-
pected to achieve similar enhancements in video modeling.
We will provide an expanded discussion on EC and DC in
the revision. Theoretical support comes from Wyner-Ziv
coding, indicating that DC frameworks can match EC ones
in rate.



5. Additional Results
5.1. Talking Head Video Reconstruction

Additional results of the talking head video reconstruction
are shown in Figure 6. We can see that our proposed IMF
can faithfully reconstruct the frames including no-facial
contents, such as the hand and the microphone.

5.2. General Video Reconstruction

The results of the general video reconstruction are shown in
Figure 7. For general video frames, the proposed method
IMF can reconstruct the general data with high-fidelity,
which faithfully models the subtle movement of the foliage,
the blooming of the flowers, as well as the waving cloth.

5.3. Token Editing for Head Pose

We compare our results with the previous SOTA method
PECHead [3], as they explicit utilizing the 3DMM [2] face
coefficients. All the samples are the in-the-wild images
from the FFHQ [9] dataset.

Given Head Pose Editing. The results of token editing for
head pose are shown in Figure 8, where the head pose are
extracted from the first row “target pose”.

Free Head Pose Editing. The results of free pose editing
are shown in Figure 9, where the head pose are arbitrarily
set.

5.4. Token Editing for Expression

The results of token editing for facial expression are shown
in Figure 10, where the head pose are extracted from the
first row “target exp.”. All the samples are the in-the-wild
images from the FFHQ [9] dataset.
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Figure 6. Comparison of talking head video reconstruction results obtained by the proposed method and previous SOTA approaches.
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Figure 7. Comparison of talking head video reconstruction results obtained by the proposed method and previous SOTA approaches.
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Figure 8. Head pose editing results of the proposed method IMF and the previous SOTA PECHead [3].
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Figure 9. Comparison of talking head pose free editing results obtained by the proposed method and the state-of-the-art approach PEC-
Head [3].
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Figure 10. Expression editing results of the proposed method IMF and the previous SOTA PECHead [3].
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