
Multiplane Prior Guided Few-Shot Aerial Scene Rendering

Supplementary Material

In this supplement, we first conduct more experimental re-
sults and discussion to evaluate the robustness and efficiency
of our proposed Multiplane Prior guided NeRF (MPNeRF).
We also include more qualitative results to discuss the mo-
tivation and limitations of MPNeRF. Finally, we add more
details of experimental settings and implementations.

1. Additional Experiments and Analysis
Robustness to Hyperparameters. We have conducted a
series of experiments to assess the sensitivity of our model
to hyperparameters. Specifically, we focus on the hyperpa-
rameter λ, which plays a crucial role in balancing different
components of our loss function. In Figure 1, we illustrate
the impact of varying λ on the performance of the proposed
MPNeRF and a standard NeRF [12] model.

As λ increases, we observe that the PSNR and SSIM met-
rics tend to plateau, suggesting that there is an optimal range
for λ wherein the model achieves a balance between fidelity
and perceptual quality. On the other hand, the LPIPS metric
shows an initial decrease followed by a gradual increase,
indicating a sweet spot where the model best captures the
perceptual features of the aerial scenes. The trends exhib-
ited by MPNeRF show its relative insensitivity to λ within
a reasonable range, which underscores the robustness of
our method. Notably, MPNeRF consistently outperforms the
baseline NeRF model across all metrics, demonstrating the
effectiveness of incorporating the multiplane prior to the
rendering process.

Figure 1. Hyperparameter Sensitivity Analysis. Performance
comparison of our method (MPNeRF) and a baseline NeRF model
across different values of hyperparameter λ. The graphs show
PSNR, SSIM, and LPIPS metrics. MPNeRF is robust to a wide λ
choice.

MPNeRF vs MPI-based Methods. The present study of
MPI mainly focuses on overcoming shortcomings such as
“failure to represent continuous 3D space” in [9]. In contrast,
our approach utilizes MPI as a bridge to convey complex
information that a single NeRF struggles with. We construct
comparison experiments under 3-view settings among the

proposed MPNeRF, the original MPI [15], and MINE [9]
In Table. 1, the original MPI achieves an 18.57 PSNR, 0.54
SSIM, and 0.45 LPIPS. While MINE performs better with
19.99 PSNR, 0.61 SSIM, and 0.40 LPIPS. Our MPNeRF
outperforms these methods by a large margin. These MPI-
based methods face inherent limitations like ghosting effects
and cropped corners under sparse inputs and large camera
movements.

Methods PSNR SSIM LPIPS

MPI [15] 18.57 0.54 0.45
MINE [9] 19.99 0.61 0.40

NeRF branch w/o Lmul 15.13 0.20 0.58
MPI branch 20.32 0.57 0.34

NeRF branch w/t Lmul 21.72 0.80 0.19

Table 1. Comparation between the NeRF and MPI. This table
presents the evaluation of the MPI based method in previous studies,
NeRF branch without multiplane loss (Lmul), the MPI branch in-
dependently, and the NeRF branch with Lmul within our MPNeRF
framework. The metrics of PSNR, SSIM, and LPIPS demonstrate
the significant impact of the multiplane prior on the rendering per-
formance in sparse aerial scenes.

NeRF Branch vs MPI Branch. In Table. 1, we examine the
performance impact of the NeRF and MPI branches within
our proposed MPNeRF. Initially, the NeRF branch without
the multiplane loss Lmul (equals to a plain NeRF model)
demonstrates a PSNR of 15.13, an SSIM of 0.20, and an
LPIPS of 0.58. These values indicate a baseline level of
performance where the NeRF branch struggles with sparse
aerial views, as evidenced by the low PSNR and SSIM scores,
along with a high LPIPS value which suggests a significant
perceptual difference from the ground truth. In contrast, the
MPI branch alone shows better across all metrics, with a
PSNR of 20.32, an SSIM of 0.57, and a reduced LPIPS of
0.34. The MPI branch’s improved performance is likely due
to its discrete depth-based representation that aligns better
with the structured nature of aerial scenes, thus capturing
the scene geometry more effectively. And the inductive bias
of CNN and Transformer makes MPI generalize better. The
most significant performance gains are observed when the
NeRF branch is combined with the multiplane loss Lmul,
resulting in a PSNR of 21.72, an SSIM of 0.80, and an LPIPS
of 0.19. The addition of Lmul to the NeRF branch enhances
its ability to recover details from sparse views, as reflected
by the substantial improvements in PSNR, SSIM, and LPIPS.
The proposed Multiplane Prior serves as a bridge to convey
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Figure 2. Training Progression of MPNeRF. The sequence shows comparative results from the NeRF and MPI branches at various training
stages under 3 view settings. Left to right: early, mid, and late phases of training. The NeRF branch initially shows noisier reconstructions
with indistinct depth estimations, while the MPI branch exhibits crop edge and overlapping ghosting effects. Over time, the NeRF branch,
guided by the MPI-derived multiplane prior, progressively captures finer details and more accurate depth information, as reflected in the
sharpening of depth map visualizations.

information that is hard to learn by the traditional NeRF
pipeline. These results underscore the efficacy of incorporat-
ing multiplane priors into the NeRF framework for few-shot
aerial scene rendering.
Other Few-shot NeRF Methods Combined with Multi-
plane Prior. It stands to reason that it’s worth evaluating
other Few-shot NeRF methods combined with multiplane
prior. We incorporated FreeNeRF’s [19] frequency regular-
ization and evaluated it under a 3-view setting. This inte-

gration results in a marginal increase in the PSNR by 0.2db.
We believe the MPI’s noisy predictions help reduce early
training overfitting in high-frequency details. This mecha-
nism seems to parallel the underlying concept of FreeNeRF,
potentially explaining the minimal improvement.
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Figure 3. Detail Comparison between MPI and NeRF Branch
Outputs. The images on the left column represent the MPI branch’s
output, displaying sharper details with overlapping ghosting effects
in the highlighted regions. In contrast, the right column shows
the NeRF branch’s output, where the same regions appear more
blurred.

2. Discussion and Future Works

Why MPNeRF Works? Despite the advantage of the MPI
representation in aerial scenes, a simple question is: Why
MPNeRF is kept away from the cropped edge and over-
lapping ghosting effect of the MPI? Avoiding the cropped
edge is simple, we sample rays from unseen views follow-
ing the mask generated during homography warping. To
better illustrate why the overlapping ghosting effect can
not be learned by NeRF, we visualize the same target view
rendered by the MPI branch in Figure. 3. With the source
viewpoint varying, the overlapping ghosting effect in the
rendered target view differs. Since MPI derived from differ-
ent viewpoints does not share a common world space, these
overlapping ghosting effects are not multi-view consistent
across all views. Thus these effects violate the multi-view
consistency assumption of NeRF [12]. With these noises
provided as pseudo-supervision, the MLP optimized with
gradient descent tends to give blurry rendering. The blurring
signifies NeRF’s attempt to average out the incongruities
across views. These pseudo-labels, while derived from an
informed place, act as imperfect guides, introducing a trade-
off that MPNeRF must navigate. On one hand, they provide
a rich, albeit noisy, signal that captures the complexity of
aerial scenes. On the other, they present a risk of polluting
the training process with artifacts.

Although MPNeRF shows that a simple MSE loss can
perform well, this delicate balance highlights the importance
of a carefully crafted training regimen, one that can differen-
tiate between useful signals and misleading noise. Our future
work will delve into refining this balance, potentially through
the development of more sophisticated noise-filtering mecha-
nisms or through the implementation of more robust training
strategies that can better leverage the nuanced information

within these pseudo-labels. In doing so, we may further en-
hance MPNeRF’s rendering quality, pushing the boundaries
of few-shot aerial scene rendering.
Semantic Integration for Improved Scene Understand-
ing. Integrating semantic segmentation into the MPNeRF
framework offers an exciting direction for enhancing scene
understanding. By associating semantic labels with the MPI
branch, MPNeRF may provide more contextually aware re-
constructions and pave the way for applications in urban
planning and navigation under limited data.
Scene Editing. An exciting avenue for future research is
the possibility of editing NeRF-rendered scenes by directly
manipulating the MPIs generated by the MPI branch. This
could enable users to alter scene characteristics such as color,
texture, or even geometric structure, through an intuitive
interface. A potential direction is utilizing differentiable ren-
dering techniques to backpropagate the desired edits from the
scene rendering back to the MPI and NeRF representations.
Scalability. Currently, scalability remains a potential limi-
tation when our MPNeRF model is applied to larger scenes.
The primary bottleneck arises from the inherent capacity
constraints of NeRF models. They are typically optimized
for smaller, more controlled environments and can struggle
to maintain fidelity at the increased scale and complexity
of larger scenes. As scenes expand in size, the NeRF’s neu-
ral network requires a corresponding increase in capacity
to model the additional detail, which can lead to a signifi-
cant escalation in computational and memory requirements
[14, 18]. Furthermore, the encoder-decoder architecture em-
ployed within our MPI branch is not ideally suited for high-
resolution imagery [1, 3]. It tends to consume substantial
amounts of memory, especially when processing the finer de-
tails necessary for large-scale scene rendering. The memory
footprint grows rapidly with the resolution of input images
due to the quadratic increase in the number of pixels that
need to be processed simultaneously.

3. Additional Visualizations.
Training Progression of MPNeRF. Figure. 2 presents a
detailed visual account of the training evolution within our
MPNeRF, delineating the comparative outcomes from the
NeRF and MPI branches across three distinct training phases.
The left columns illustrate the initial stage where the NeRF
branch outputs are notably noisier, and the depth maps lack
precise definition, signifying the model’s initial struggle to
interpret the sparse aerial views. These preliminary results
are characterized by a lack of clarity and detail, with the
depth maps displaying broad, undifferentiated regions of
low confidence. As training progresses to the midpoint, dis-
played in the center columns, the MPI branch starts to assert
its strengths. It delivers reconstructions with improved clarity
and begins to better capture the geometric intricacies of the
aerial scenes. This enhancement is evident in the depth maps,



where we observe a transition from broad, undefined areas to
more distinct regions of depth estimation, indicative of the
MPI branch’s capability to delineate structural features more
effectively at this stage. Reaching the later stages of training,
shown in the right columns, the NeRF branch, now informed
by the multiplane prior, shows significant advancement. It
starts to match and, in certain aspects, surpasses the MPI
branch’s performance by delivering images with greater de-
tail fidelity. This is most apparent in the depth maps, where
the once diffused and expansive high-confidence regions
have now evolved into sharply defined areas, highlighting
the network’s improved proficiency in depth perception.

The visualization of the depth maps is particularly telling;
the sharpening of these maps directly correlates with the im-
proved model’s depth estimations. The NeRF branch, lever-
aging the multiplane prior, demonstrates an enhanced ability
to resolve the complex spatial relationships inherent in aerial
scenes, moving beyond the initial limitations evidenced in
the early training outputs.

This sequential improvement underscores the efficacy of
the MPNeRF training process, which effectively leverages
the distinct advantages of both NeRF and MPI branches to
progressively refine the model’s understanding of the scene,
culminating in high-quality renderings from sparse inputs.
The journey from noisy, indistinct initial attempts to clear,
detailed final outputs exemplifies the potent potential of
MPNeRF for aerial scene rendering.
Different Layers of the MPI Branch. To explore the geome-
try and appearance captured by the MPI branch, we visualize
the color with transparency computed by the density of dif-
ferent MPI layers. Figure. 4 showcases a series of images
that represent different layers of the MPI branch, each corre-
sponding to a specific depth level within the aerial scene, as
labeled from ’Shallow’ to ’Deep’. The images progress from
the topmost layers, which capture high-elevation features
like roofs, to the bottom layers, which reveal ground-level
details. However, it is evident that the fidelity of the recon-
struction varies across depth layers. The initial layers, while
capturing the broad layout, lack the finer details and the
sharpness present in the ground truth (GT). The middle lay-
ers begin to show more structure and texture, indicating an
intermediate range where the MPI branch most effectively
captures the scene’s appearance. The deeper layers, while
richer in detail, start to exhibit artifacts, such as blurring
and possible misalignments, before converging towards the
ground truth. This suggests that while the MPI branch of MP-
NeRF shows promise in reconstructing aerial scenes from
limited data, it is still highly inaccurate and contains artifacts.

4. More Implementation Details.
Datasets and Metrics. Our evaluation is conducted on a
dataset that presents a rich tapestry of aerial landscapes, the
LEVIR-NVS [16], comprising 16 diverse scenes that span

mountains, urban centers, villages, and standalone architec-
tural structures. Each scene in the dataset is represented by
a collection of 21 multi-view images, each with a resolu-
tion of 512 × 512 pixels. This selection ensures a broad
representation of scenarios that MPNeRF might encounter
in real-world applications. The LEVIR-NVS dataset encap-
sulates a variety of pose transformations that mimic the
dynamic nature of UAV flight patterns, including wrapping
and swinging motions. These pose variations introduce re-
alistic challenges in aerial photography, such as changes in
viewpoint and scale, making the dataset a rigorous testing
ground for our model. The inclusion of these complex trans-
formations in the simulation process is crucial for assessing
the robustness of MPNeRF’s performance in conditions that
closely approximate actual aerial image capture.

In our experimental setup, we strategically select specific
views for training to assess the capability of our model in
both interpolation and extrapolation scenarios. For the three-
view setting, we utilize view IDs: 0, 7, and 15. This selection
is designed to provide a spread of perspectives that chal-
lenges the model to extrapolate the scene effectively. In the
five-view setting, we expand our selection to include view
IDs: 0, 7, 10, 15, and 20. This broader range tests the model’s
interpolation skills and its ability to extrapolate scenes from
more diverse viewpoints.

In our experiments, we employ three standard metrics.
Peak Signal-to-Noise Ratio (PSNR) is used to measure the
image reconstruction quality, calculated as the negative loga-
rithm of the mean squared error between the predicted and
ground truth images. Structural Similarity Index Measure
(SSIM), obtained via the skimage1 library, assesses image
quality based on luminance, contrast, and structural infor-
mation. Learned Perceptual Image Patch Similarity (LPIPS),
computed using a VGG-based model from the lpips2 pack-
age, evaluates perceptual similarity, reflecting more human-
centric assessments of image quality.
Implementation of Baseline Methods. We implement the
baseline methods following their open-source code base. We
adopt 64 coarse sampling and 32 fine sampling for the NeRF
backbone of these methods. In particular, the RegNeRF [13]
and FreeNeRF [19] are implemented based on Mip-NeRF
[2], and others [6, 7, 12, 20] are based on a vanilla NeRF. All
methods are trained for 30 epochs for each scene and the hy-
perparameters are strictly consistent across all experiments.
Implementation of MPNeRF. We implement MPNeRF
based on the nerf-pl codebase 3, which provides a PyTorch
Lightning framework for efficiently operationalizing NeRF
architectures. The settings of hyperparameters are strictly
consistent with baseline methods. Our NeRF branch adheres
closely to the original NeRF paper specifications, ensuring

1https://scikit-image.org/
2https://github.com/richzhang/PerceptualSimilarity
3https://github.com/kwea123/nerfpl
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Figure 4. Visualization of MPI Branch Depth Layers. Sequential depth layers from the MPI branch reveal the aerial scene’s structure,
evolving from translucent to opaque as we move from shallow to deep layers, culminating in the ground truth (GT) image for reference.

a faithful reproduction of the baseline model. We adopt 64
coarse sampling and 32 fine sampling for the NeRF branch.
Inspired by previous works [9, 15, 16], our MPI branch is
constructed following an encoder-decoder architecture MPI
generator. The encoder is a strand SwinV2 Transformer [10]
pretrained via SimMIM [17]. The encoder is kept frozen
during training. A detailed description of our decoder archi-
tecture is presented in Table. 2. The MPI generator embeds
depth hypotheses into the input features, which are then pro-
cessed through convolutional layers to output MPIs with
RGB and density values, leveraging skip connections and
multi-scale representations for detail enhancement.

For optimization, we utilize the Adam optimizer [8] with
a learning rate of 5× 10−4, and a cosine learning rate decay
scheduler [11]. Our model is trained on a single NVIDIA
RTX 3090 GPU for 30 epochs, taking about 2.5 hours to
converge. The batch size is set to 1024 rays per iteration
for both seen and unseen views, allowing sufficient diversity
of data points for gradient estimation while maintaining

manageable memory requirements.
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