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S1. Appendix
S1.1. Details of the 3D encoder

The tokenization of point cloud. We follow Yu et al. [4]
to partition the points into 512 point groups (sub-clouds),
with a sub-cloud containing precisely 32 points. Then, a
mini-PointNet [2] is adopted to project those sub-clouds
into point embeddings.

PointBERT backbone. Following OpenShape [1], we
scale up the Point-BERT [4] model. The hyperparameters
for scaling up are shown in Table S1.

S1.2. More details and experimental results of the
strong baseline

We begin with the baseline developed by Liu et al. [1] and
use the “Ensemble” dataset for training. The temperature
parameters for scaling the logit in two contrastive losses are
unified, and the batchsize is 200. To simplify the analysis,
we don’t use the “Hard Negative Mining” method utilized
by OpenShape.

The setting of temperature for the contrastive loss. The
temperature controls the range of logits in the softmax func-
tion used in the contrastive loss [3]. We first follow the
CLIP, which initializes the learnable temperature parame-
ter to 14.28 and clamps the value if it exceeds 100. In the
image-text-3D alignment paradigm, the point cloud encoder
is trained to align image and text modalities simultaneously.
Intuitively, different modalities may have separately appro-
priate logit ranges. To this end, we verify the effect of tem-
perature settings (a unified one used by two losses or two
separate ones, each used by a loss) in Table S2 and choose
“Clamp+Separate” by default.

The effect of batchsize for different model sizes . We
systematically investigate the effect of batchsize across
model sizes in Table S3. From the results, increasing the
model size or batchsize can obtain a better performance on

Objaverse-LVIS whose distribution matches the training set
very well. However, the results of the other two datasets
are barely satisfactory, indicating the model’s generaliza-
tion ability trained by “Ensemble” dataset still has much
room to improve. Considering a good trade-off between
datasets and training efficiency, we use a medium model
size of “25.9M” and batchsize of 2k for all the following
ablation studies by default.

Hyperparameter analysis of EMA decay rate . We an-
alyze the effect of the decay rate used in the Exponential-
Moving-Average (EMA) update. From the results shown in
Table S4, choosing the decay rate from the range “0.999” to
“0.9999” all yield promising results. Based on the results
from three datasets, we choose “0.9995” by default.

Training stability. Empirically, we observe that the
model’s test performance on the ScanObjectNN benchmark
is unstable during training on the Objaverse dataset (the
blue curve in Figure S1). Our improved baseline (the
red curve) can significantly alleviate the training instabil-
ity. Meanwhile, our proposed MixCon3D further boosts
the performance for both the Objaverse-LVIS and ScanOb-
jectNN.

S1.3. Additional Experimental Results

Full results of gMV and view amounts. We list the
full results of using various types of gMV , and view
amounts in Table S6 and Table S7. Using simple view-
pooling as gMV obtains consistent improvement across
three datasets. Adding an additional FC layer after the
view-pooling or max pooling can enhance the Objaverse-
LVIS performance while degrading the generalization abil-
ity on ScanObjectNN and ModelNet40. Given the availabil-
ity of the image modality in the Objaverse-LVIS testing sce-
nario, an increase in the number of views during the train-
ing phase yields a consistent enhancement in performance.
However, this increment marginally impairs the efficacy of
the ScanObjectNN and ModelNet40.
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Table S1. Hyperparameters for scaling up PointBERT [4].

# Parameters # Layers Width # Heads MLP Dim # Patches Patch Embed Dim

13.3M 6 512 8 1024 64 128
25.9M 12 512 8 1024 128 128
32.3M 12 512 8 1536 384 256

Table S2. The analysis of settings of temperature for the constrastive losses.

Clamp Temperature
Setting

Objaverse-LVIS ScanObjectNN ModelNet40

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

% Unified 46.5 34.0 69.0 76.8 52.0 53.2 77.5 87.5 84.2 84.9 95.9 97.4
✓ Unified 46.5 34.1 69.0 76.8 52.2 53.3 77.5 87.7 84.4 84.9 96.0 97.6
% Separate 46.4 34.0 69.0 76.8 52.5 53.7 77.2 87.2 84.3 84.6 96.0 97.5
✓ Separate 46.8 34.4 69.2 77.1 52.8 54.0 77.6 87.4 84.4 84.6 96.1 97.4

A unified view of multi-modal inference We analyze
various multi-modal feature ensemble methods under four
views (M = 4) in the main text. To further analyze the
combined impact of view amount and inference schemes,
we perform in-depth analysis in Table S5, including indi-
vidual modality inference (point cloud yPi and image yPi )
and modality ensemble inference (using gMV to obtain y3Di
and yPi +yIi ). From the results, the ensemble scheme of the
point cloud and the image modalities significantly improves
performance. Moreover, benefitting from the large-scale
pretrained CLIP model, the yPi + yIi scheme further boosts
the performance on Objaverse-LVIS when using multi-view
images for inference.
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Top1-C Acc Curves on Objaverse-LVIS Top1 Acc Curves on ScanObjectNN

Figure S1. The zero-shot Top1 accuracy curve comparisons between the baseline, the improved strong baseline and our MixCon3D. Our
improved baseline can not only perform better on the Objaverse-LVIS benchmark (the left sub-figure) but also stabilize the generalization
performance (the right sub-figure).

Table S3. The analysis of batchsize across different model sizes.

Para. Batchsize Objaverse-LVIS ScanObjectNN ModelNet40

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

32.3M

256 47.0 34.9 69.2 76.9 50.2 52.6 77.9 87.5 85.0 85.2 96.4 97.4
512 47.7 36.1 69.8 77.2 49.9 52.1 75.7 85.5 84.6 84.6 95.8 97.1
1024 49.1 36.9 70.9 78.1 52.1 55.0 76.0 85.9 83.3 83.7 96.8 98.3
2048 49.6 37.4 71.1 78.3 53.2 55.0 75.3 85.7 84.6 83.7 95.2 96.9
4096 49.6 37.9 70.9 78.1 52.7 54.1 76.1 85.3 83.7 82.3 96.1 97.7

25.9M

256 46.8 34.4 69.2 77.1 52.8 54.0 77.6 87.4 84.4 84.6 96.1 97.4
512 47.3 34.7 69.6 77.1 52.5 55.6 77.2 87.4 84.3 84.6 96.3 98.1
1024 47.8 35.0 69.9 77.2 52.9 56.2 77.7 87.5 84.4 85.3 96.3 98.0
2048 48.0 35.3 70.1 77.4 53.5 55.5 78.0 87.7 84.8 85.3 96.4 97.7
4096 48.5 35.6 70.4 77.6 52.9 55.1 77.9 87.8 84.3 85.4 95.9 97.5

13.3M
512 45.2 33.7 66.7 74.5 54.7 56.6 77.3 87.0 83.7 83.7 94.7 96.8
1024 45.8 34.3 67.1 74.8 54.2 56.4 76.3 86.4 85.2 84.0 95.6 97.7
2048 46.3 35.1 67.3 74.8 53.1 54.4 78.5 87.4 83.5 83.4 95.4 97.5

Table S4. The analysis of settings of temperature for the constrastive losses.

Decay Rate Objaverse-LVIS ScanObjectNN ModelNet40

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

w/o EMA 48.5 36.0 70.6 77.7 54.1 56.3 78.2 87.9 85.0 85.0 96.4 97.9
0.99 49.2 36.5 71.1 78.3 54.8 57.1 78.9 88.2 85.7 85.9 96.8 98.4
0.999 49.3 36.5 71.2 78.3 55.3 58.3 79.4 88.8 86.4 86.3 96.9 98.4
0.9995 49.8 36.9 71.7 78.7 55.6 58.9 79.3 88.6 86.1 86.2 96.8 98.3
0.9999 50.1 37.0 71.3 78.6 55.4 58.5 78.9 88.4 85.7 85.3 96.9 98.2
0.99999 0.3 0.1 0.5 1.1 17.1 11.2 25.2 42.6 5.3 5.4 13.5 21.6



Table S5. The ablations of inference schemes under different settings of views (M ).

Inference
Scheme

M = 1 M = 4 M = 8 M = 12

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

yPi 51.1 37.9 73.2 80.0 50.4 37.4 72.2 79.1 51.1 38.4 73.1 79.8 51.5 39.4 73.7 80.5
yIi 45.1 34.6 64.3 70.8 51.9 38.5 73.1 79.4 52.0 41.1 73.1 79.5 52.5 41.5 73.8 80.1
y3Di 51.6 38.2 73.7 80.6 52.5 38.8 74.5 81.2 52.8 39.1 74.7 81.5 53.2 39.5 75.4 82.1

yPi + yIi 51.2 37.8 73.1 79.6 53.8 40.9 75.5 81.9 54.8 43.1 76.3 82.7 55.3 43.8 77.1 83.4

Table S6. The analysis of variants of gMV .

Function gMV Objaverse-LVIS ScanObjectNN ModelNet40

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

- 51.6 38.2 73.7 80.6 58.1 61.9 80.3 89.2 86.6 86.6 96.4 98.1
View-pooling 52.5 38.8 74.5 81.2 58.6 62.3 80.3 89.2 86.8 86.8 96.9 98.3
View-pooling + FC 52.7 39.1 74.8 81.4 52.4 54.1 75.2 86.5 84.5 84.0 95.1 96.5
Max pooling 52.1 38.4 74.1 80.4 56.7 60.0 79.3 89.1 85.9 85.6 96.9 98.1
Max pooling + FC 51.6 38.0 73.2 80.3 55.8 58.7 77.1 87.6 85.2 85.6 96.0 97.6

Table S7. Ablation studies for the amount (M ) of the view.

Multi-View Objaverse-LVIS ScanObjectNN ModelNet40

Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5 Top1 Top1-C Top3 Top5

1 51.6 38.2 73.7 80.6 58.1 61.9 80.3 89.2 86.6 86.6 96.4 98.1
2 52.3 38.9 74.1 80.0 57.0 60.5 77.8 88.0 86.2 86.7 96.2 97.8
4 52.5 38.8 74.5 81.2 58.6 62.3 80.3 89.2 86.8 86.8 96.9 98.3
8 52.7 39.3 74.7 81.7 58.1 61.7 78.9 88.5 86.2 85.5 96.8 98.1

12 53.2 39.5 75.4 82.1 54.2 56.1 77.8 86.7 83.3 83.6 95.1 96.8
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