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S1. Appendix
S1.1. Details of the 3D encoder

The tokenization of point cloud. We follow Yu et al. [4]
to partition the points into 512 point groups (sub-clouds),
with a sub-cloud containing precisely 32 points. Then, a
mini-PointNet [2] is adopted to project those sub-clouds
into point embeddings.

PointBERT backbone. Following OpenShape [1], we
scale up the Point-BERT [4] model. The hyperparameters
for scaling up are shown in Table S1.

S1.2. More details and experimental results of the
strong baseline

We begin with the baseline developed by Liu et al. [1] and
use the “Ensemble” dataset for training. The temperature
parameters for scaling the logit in two contrastive losses are
unified, and the batchsize is 200. To simplify the analysis,
we don’t use the “Hard Negative Mining” method utilized
by OpenShape.

The setting of temperature for the contrastive loss. The
temperature controls the range of logits in the softmax func-
tion used in the contrastive loss [3]. We first follow the
CLIP, which initializes the learnable temperature parame-
ter to 14.28 and clamps the value if it exceeds 100. In the
image-text-3D alignment paradigm, the point cloud encoder
is trained to align image and text modalities simultaneously.
Intuitively, different modalities may have separately appro-
priate logit ranges. To this end, we verify the effect of tem-
perature settings (a unified one used by two losses or two
separate ones, each used by a loss) in Table S2 and choose
“Clamp+Separate” by default.

The effect of batchsize for different model sizes . We
systematically investigate the effect of batchsize across
model sizes in Table S3. From the results, increasing the
model size or batchsize can obtain a better performance on
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Objaverse-LVIS whose distribution matches the training set
very well. However, the results of the other two datasets
are barely satisfactory, indicating the model’s generaliza-
tion ability trained by “Ensemble” dataset still has much
room to improve. Considering a good trade-off between
datasets and training efficiency, we use a medium model
size of “25.9M” and batchsize of 2k for all the following
ablation studies by default.

Hyperparameter analysis of EMA decay rate . We an-
alyze the effect of the decay rate used in the Exponential-
Moving-Average (EMA) update. From the results shown in
Table S4, choosing the decay rate from the range “0.999” to
“0.9999” all yield promising results. Based on the results
from three datasets, we choose “0.9995” by default.

Training stability. Empirically, we observe that the
model’s test performance on the ScanObjectNN benchmark
is unstable during training on the Objaverse dataset (the
blue curve in Figure S1). Our improved baseline (the
red curve) can significantly alleviate the training instabil-
ity. Meanwhile, our proposed MixCon3D further boosts
the performance for both the Objaverse-LVIS and ScanOb-
jectNN.

S1.3. Additional Experimental Results

Full results of ¢*"V and view amounts. We list the
full results of using various types of g™V, and view
amounts in Table S6 and Table S7. Using simple view-
pooling as g™V obtains consistent improvement across
three datasets. Adding an additional FC layer after the
view-pooling or max pooling can enhance the Objaverse-
LVIS performance while degrading the generalization abil-
ity on ScanObjectNN and ModelNet40. Given the availabil-
ity of the image modality in the Objaverse-LVIS testing sce-
nario, an increase in the number of views during the train-
ing phase yields a consistent enhancement in performance.
However, this increment marginally impairs the efficacy of
the ScanObjectNN and ModelNet40.



Table S1. Hyperparameters for scaling up PointBERT [4].

# Parameters # Layers Width # Heads MLP Dim # Patches Patch Embed Dim

13.3M 6 512 8 1024 64 128
25.9M 12 512 8 1024 128 128
32.3M 12 512 8 1536 384 256

Table S2. The analysis of settings of temperature for the constrastive losses.

Temperature ‘ Objaverse-LVIS ScanObjectNN ModelNet40

Clamp .
Seting | Topl Topl-C Top3 TopS Topl Topl-C Top3 TopS Topl Topl-C Top3 Tops

Unified 46.5 340 69.0 768 520 532 775 815 842 849 959 974
Unified 46.5 341 690 76.8 522 533 775 877 844 849 96.0 97.6
Separate | 464 340 69.0 76.8 525 537 772 872 843 846 96.0 975

X
v
X
v Separate |468 344 692 771 528 540 77.6 874 844 846 961 974

A unified view of multi-modal inference We analyze
various multi-modal feature ensemble methods under four
views (M = 4) in the main text. To further analyze the
combined impact of view amount and inference schemes,
we perform in-depth analysis in Table S5, including indi-
vidual modality inference (point cloud y and image y!)
and modality ensemble inference (using gV to obtain y3”
and y?” +y!). From the results, the ensemble scheme of the
point cloud and the image modalities significantly improves
performance. Moreover, benefitting from the large-scale
pretrained CLIP model, the y/" + y! scheme further boosts
the performance on Objaverse-LVIS when using multi-view
images for inference.
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Figure S1. The zero-shot Topl accuracy curve comparisons between the baseline, the improved strong baseline and our MixCon3D. Our
improved baseline can not only perform better on the Objaverse-LVIS benchmark (the left sub-figure) but also stabilize the generalization
performance (the right sub-figure).

Table S3. The analysis of batchsize across different model sizes.

Para Batchsize‘ Objaverse-LVIS ScanObjectNN ModelNet40
‘Topl Topl-C Top3 Top5 Topl Topl-C Top3 Top5 Topl Topl-C Top3 Top5

256 470 349 692 769 502 526 779 875 850 852 964 974
512 477 361 698 772 499 521 757 855 84.6 84.6 958 97.1
32.3M 1024 491 369 709 781 521 550 76.0 859 833 837 96.8 98.3
2048 49.6 374 711 783 532 55,0 753 857 84.6 837 952 969
4096 496 379 709 781 527 541 761 853 837 823 96.1 97.7
256 46.8 344 692 771 528 540 77.6 874 844 846 96.1 974
512 473 347 696 771 525 556 772 874 843 846 963 98.1
25.9M 1024 478 350 699 772 529 562 7777 875 844 853 963 98.0
2048 480 353 701 774 53,5 555 78.0 877 848 853 964 977
4096 485 356 704 77.6 529 551 779 878 843 854 959 975
512 452 337 667 745 547 566 773 87.0 837 837 947 96.8
13.3M 1024 458 343 671 748 542 564 763 864 852 84.0 956 977
2048 463 351 673 748 531 544 785 874 835 834 954 975

Table S4. The analysis of settings of temperature for the constrastive losses.

Decay Rate | Objaverse-LVIS ScanObjectNN ModelNet40
|T0p1 Topl-C Top3 Top5 Topl Topl-C Top3 Top5 Topl Topl-C Top3 Top5

w/o EMA 485 36.0 706 7777 541 563 782 879 8.0 8.0 964 979
0.99 492 365 T71.1 783 548 57.1 789 882 857 859 96.8 984
0.999 493 365 712 783 553 583 794 888 864 863 969 984
0.9995 498 369 717 78.7 556 589 793 88.6 86.1 862 96.8 983
0.9999 501 37.0 713 786 554 585 789 884 857 8.3 969 982
0.99999 0.3 0.1 05 L1 171 112 252 426 53 54 13.5 21.6




Table S5. The ablations of inference schemes under different settings of views (M).

Inference‘ M=1 M=4 M =38 M =12
Scheme ‘Topl Top1-C Top3 TopS Topl Topl-C Top3 Top5 Topl Topl-C Top3 TopS Topl Topl-C Top3 Top5
yZP 51.1 379 73.2 80.0 504 37.4 722 79.1 51.1 384 73.1 79.8 51.5 394 73.7 80.5
yil 45.1 346 643 70.8 51.9 385 73.1 794 52.0 41.1 73.1 79.5 52.5 41.5 73.8 80.1
yg’D 51.6 38.2 73.7 80.6 52.5 38.8 74.5 81.2 52.8 39.1 74.7 81.5 53.2 39.5 754 82.1
yZP +yi[ 51.2 37.8 73.1 79.6 53.8 40.9 75.5 819 54.8 43.1 76.3 82.7 553 43.8 77.1 834
Table S6. The analysis of variants of g™V
Function g™V ‘ Objaverse-LVIS ScanObjectNN ModelNet40
‘Topl Topl-C Top3 Top5 Topl Topl-C Top3 Top5 Topl Topl-C Top3 Top5
- 516 382 737 80.6 581 619 803 89.2 86.6 86.6 964 98.1
View-pooling 525 388 745 812 586 623 803 89.2 868 868 969 98.3
View-pooling + FC | 52.7 39.1 748 814 524 541 752 865 845 84.0 951 965
Max pooling 52.1 384 741 804 567 60.0 793 89.1 859 856 969 98.1
Max pooling + FC | 51.6 38,0 732 803 558 587 771 876 852 8.6 96.0 976
Table S7. Ablation studies for the amount (M) of the view.
Multi-View ‘ Objaverse-LVIS ScanObjectNN ModelNet40
‘Topl Topl-C Top3 Top5 Topl Topl-C Top3 TopS Topl Topl-C Top3 Top5
1 51.6 382 737 80.6 58.1 619 803 89.2 866 866 964 98.1
2 52.3 389 741 80.0 570 605 77.8 88.0 86.2 86.7 96.2 978
4 52.5 388 745 812 586 623 803 89.2 868 868 969 983
8 52.7 393 747 817 58.1 61.7 789 885 862 855 96.8 98.1
12 532 395 754 821 542 56.1 77.8 86.7 833 83.6 95.1 96.8
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