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1. Discussions

1.1. Discussion with LEWEL

Both LEWEL [10] and our FRA seek to encourage the

model to look into local regions instead of treating image

as a whole. However, our FRA is fundamentally different

from LEWEL [10] in the following aspects:

• Motivation. We learn the heatmaps from a set of learn-

able positional embeddings, which leverages the atten-

tion mechanism to globally look up the image for vi-

sual patterns. By contrast, LEWEL [10] only derives the

heatmaps from CNN-based local features and thus lacks

the capability to capture global information. Moreover,

we explicitly capture the pairwise relations between the

visual patterns (regions) represented by the facial mask

embeddings by aligning the per-pixel assignments of each

pixel feature over the facial mask embeddings (i.e., each

pixel feature should have similar similarity distribution

over the facial mask embeddings between the momentum

teacher and online student) while LEWEL [10] simply

matches the visual patterns across views independently,

failing to look into the such pairwise relations.

• Results. Our FRA significantly outperforms

LEWEL [10] on various downstream facial analysis

tasks, e.g., our FRA achieves 66.16 on AffectNet facial

expression recognition while LEWEL only has 61.20.

The experimental results demonstrate the superiority

of our method compared with LEWEL [10] on facial

representation learning.

1.2. Discussion with SwAV

From the perspective of deep clustering [4], the facial mask

embeddings learned in our FRA can be viewed as proto-

types (clusters) and the heatmap prediction via the correla-

tion between the pixel features and facial mask embeddings

can be viewed as assigning pixel features to different proto-

types. However, the differences between our FRA and deep

clustering approach SwAV [4] are as follows:

• Motivation. Our FRA leverages the attention mecha-

nism to obtain the facial mask embeddings (prototypes)

by using queries to globally look up the face image while

SwAV [4] is limited by the local information of CNN. In

addition, we enforce the consistency of the local visual

patterns across augmented views by applying a region-

level contrastive objective over the discovered visual pat-

terns while SwAV [4] simply treats each image as a whole

by learning image-level representations and overlooks the

consistency of visual patterns.

• Results. As shown in Tab. 1, our FRA significantly out-

performs SwAV [4] on downstream facial analysis tasks

under the settings of few-shot and fine-tuning. Note that

Bulat et al. [2] is equivalent to SwAV [4] by pre-training

SwAV [4] model on face images.

2. Additional experimental results

2.1. Transfer learning with limited data

In Tab. 1, we evaluate the transfer performance with limited

labeled data under few-shot settings. We randomly sample

subsets from the training sets of the downstream data and

then evaluate the models on the full test sets. Following [2],

we fine-tune both the encoder backbone and task-specific

head on downstream data. For facial expression recognition

on AffectNet, we use the same training recipe for 1%, 10%

and 100% data. For 1% and 10% face alignment data, we

fine-tune the model for 100 epochs with head learning rate

0.001, encoder backbone learning rate 5 × 10−5, using the

AdamW optimizer with step decay at 80 and 90 epochs. Our

FRA achieves the best few-shot performances. In particu-

lar, our FRA outperforms SOTA few-shot face alignment

approaches, 3FabRec [1] and He et al. [9].

2.2. Results w.r.t. pre-training epochs

In Tab. 2, we report the transfer learning performance w.r.t.

pre-training epochs, from 50 ep to default 400 ep. We ob-

serve: (1) As a self-supervised pre-training approach, our
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Table 1. Transfer learning with limited data on facial expression recognition (AffectNet) and face alignment (WFLW). Bulat et al.
is evaluated with 0.7%, 10% and 100% data on WFLW as in the original paper [2].

Methods 1% 10% 100%

Bulat et al. [2, 4] 27.48 51.45 60.20

FRA 34.81 55.48 66.16
(a) AffectNet (Acc. ↑)

Methods 1% 5% 10% 20% 100%

3FabRec [1] - 7.68 6.73 6.51 5.62

He et al. [9] - 6.22 - 5.61 5.38

Bulat et al. [2, 4] 7.11 - 5.44 - 4.57

FRA 7.04 - 4.98 - 4.11
(b) WFLW (NME ↓)

Table 2. Transfer learning performance w.r.t. pre-training epochs.

Epochs 50 ep 200 ep 400 ep

RAF-DB 88.72 89.37 89.95

CelebA 91.18 91.68 92.02

300W 3.14 2.99 2.91

FRA benefits from long time pre-training. (2) With 200

epoch pre-training, the performance is close to 400 ep.

3. Visualization of learned heatmaps

Image High variance

Figure 1. Visualization of high-variance heatmaps of our
method. The first column is the original facial images. The

2-4 columns are the visualization of the top three high-variance

heatmaps.

To better understand the facial mask embeddings and

heatmap prediction, we visualize the learned heatmaps on

VGGFace2 in Fig. 1. Following [12], we visualize the fa-

cial mask embeddings with the highest variances. We ob-

serve that the heatmaps can identify the rough location of

the facial landmarks (e.g., eyes, nose, mouth).

4. Training cost analysis

Table 3. Comparison of pre-training running time with
BYOL [7]. The time relative to BYOL [7] is reported.

Method
Time/

Epoch
AffectNet CelebA 300W

BYOL [7] 1.00 65.65 91.56 3.03

FRA 1.05 66.16 92.02 2.91

In Tab. 3, we compare pre-training cost with BYOL [7],

the self-supervised pre-training framework our FRA is built

upon. We report the time cost of a single training epoch

(“Time/Epoch”) relative to BYOL [7]. Our method outper-

forms BYOL [7] in all tasks with negligible training over-

head (5% increase in cost).

5. Additional implementation details
5.1. Architecture

Following the common practice in self-supervised pre-

training [7, 10], we use ResNet-50 [8] as the encoder

backbone. The projectors Hg and H l are implemented

with a two-layer multi-layer perceptron (MLP) with Batch

Normalization (BN) and ReLU activation, following [10].

The hidden/output dimension are set to 4096/256 as in

BYOL [7], i.e., D = 256. The predictors adopt the same

architecture as the projectors. We use the same Transformer

decoder [13] architecture as in MaskFormer [5] except only

one decoder layer is employed to keep a lightweight archi-

tecture.

5.2. Pre-training

By default, we perform the pre-training on the training set of

VGGFace2 [3] with 2 NVIDIA A100 GPUs. We detect the

faces from the images using a face detector [6], randomly



select one of the faces and then resize the cropped face to

128 × 128 for pre-training. Following [10], we pre-train

for 400 epochs with batch size 1024, LARS optimizer [15]

with 1.8 learning rate, 1.5 × 10−6 weight decay, and 0.9

momentum. The cosine annealing schedule [11] is used for

learning rate decay. In ablation studies, the pre-training is

performed on VGGFace2 [3] for 50 epochs for fast training.

5.3. Transfer learning

5.3.1 Facial expression recognition

We resize the cropped and aligned facial images to 224 ×
224 before feeding them to the downstream model, follow-

ing [16]. We adopt 3 variants for the evaluation: “FRA

(LP)”, “FRA (FT)” and “FRA (EAC)”. For “FRA (LP)”,

“FRA (FT)”, we add a linear classifier that consists of a lin-

ear fully-connected layer on top of the encoder backbone

Eθ to project the latent space to the downstream task spe-

cific label space. For “FRA (EAC)”, we use our pre-trained

model to initialize the backbone of a SOTA facial expres-

sion recognition method, EAC [16]. We use the AdamW

optimizer with 0.05 weight decay for fine-tuning. The

model is fine-tuned for 100 epochs, with a batch size of

256 and cosine learning rate decay [11]. The learning rate

is set to 1.0/0.005 for “FRA (LP)” and “FRA (EAC)”, re-

spectively. For “FRA (FT)”, the optimal learning rates for

different datasets are reported in Tab. 4.

Table 4. Facial expression recognition fine-tuning learning rate.

FERPlus RAF-DB AffectNet

Backbone 2× 10−4 2× 10−4 10−4

Head 2× 10−4 2× 10−4 2× 10−3

5.3.2 Facial attribute recognition

Following [17], we resize the cropped and aligned facial

images to 224 × 224. We add a linear classifier (i.e., clas-

sification head) on top of the encoder backbone (i.e., fea-

ture extractor backbone) Eθ. Two variants are adopted:

“FRA (LP)” for linear probing and “FRA (FT)” for fine-

tuning. The models are fine-tuned for 100 epochs using

AdamW optimizer with batch size of 256 and cosine an-

nealing schedule [11]. For “FRA (LP)”, classification head

learning rate is set to 1.0 while the feature extractor back-

bone is fixed. For “FRA (FT)”, we fine-tune the models

with classification head learning rate 2 × 10−5, feature ex-

tractor backbone learning rate 2× 10−5.

5.3.3 Face alignment

We evaluate the transfer learning performance on face align-

ment by transferring our learned general facial represen-

tation to the model of a SOTA face alignment method,

STAR [18]. STAR [18] adopts hourglass network [14] as

the backbone for extracting image features. In contrast, we

replace the hourglass network [14] with ResNet pre-trained

on VGGFace2 [3]. Three deconvolutional layers are added

on top of the last ResNet layer to generate 64× 64 heatmap

like STAR [18]. We fine-tune the model for 100 epochs

using the AdamW optimizer with 5 × 10−4 learning rate

decayed at 80 and 90 epochs and 128 batch size. The other

hyper-parameters are kept the same as in STAR [18] for a

fair comparison.
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