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Supplementary Material

1. Supplement method
1.1. Prior fusion module details

The prior fusion module is an essential part of Hermes, which
is responsible for integrating knowledge encapsulated in
prior tokens with image feature maps. This fusion process
utilizes attention modules, enabling efficient and global in-
formation exchange between prior tokens and feature maps.
This design ensures Hermes’ compatibility with existing
backbones. We illustrate several implementations for com-
mon backbones in Figure 1. We first introduce the formu-
lation with the conventional attention module. Then, we
introduce the bi-directional cross-attention for CNN back-
bones. Finally, we show how to merge the prior fusion into
the MedFormer backbone.

Conventional attention module. Conventional Trans-
former architectures (e.g. ViT [5]) often rely on multi-head
self-attention that captures the all-to-all pairwise dependen-
cies among input tokens. To extend, we present a general
formulation of merging prior fusion into a conventional atten-
tion module, see Figure 1 (C). Given the input feature map
X € R"*C (n = D x H x W is the number of tokens in the
feature map, C' denotes the token dimension), and the prior
tokens p € RUtI+DXC where |t;| denotes the number of
tasks, and [ is the length of each modality prior. We first
concatenate the feature map and the prior tokens together as
the input of the transformer block: I = [X, p] € R™HItsI+,
The conventional Transformer block operates as follows:

I' = LN(I)
I" =MHA(I',I',I')) + I
MHA(q, k,v) = [heady, - - - ,headh]WO

head; = Attention(quQ, kWiK, UWiV) (D
. QK'
Attention(Q, K, V) = softmax( 'V
Vdp,

I = FEN(LN(I")) + I"

where Wo, WE WV WO are weight matrices, and dj, is
the dimension of each head. We can then obtain the prior-
injected feature map and the posterior tokens by splitting
I = [X,p]. The computation complexity for the above
prior-modified attention module is O((n + |tx| +1)?)
CNN backbones. CNN backbones, like ResUNet [8, 18],
usually use hierarchical architectures. The quadratic com-
plexity of the above all-to-all attention makes it unaffordable
to apply the prior fusion module on high-resolution feature

maps (e.g. n = 32,768 for a 32 x 32 x 32 feature map).
Therefore, we implement the prior fusion module with a bi-
directional cross-attention module instead, see Figure 1 (A).
The prior tokens p first aggregate image-specific information
from the feature map X to obtain the posterior tokens p:

p' = LN(p)

X' = LN(X)

p’ =MHA(p', X", X")+p
p = FEN(LN(p")) + p”

2)

Then we inject the knowledge in the posterior tokens to
obtain the prior-injected feature map X:

p' = LN(p)
X" = MHA(X", p'.p') + X 3)
X = FEN(LN(X")) + X"

As |t;| + | < n, the computation complexity of the bi-
direction cross-attention for the prior fusion module is O(n).
For example, for the dataset with the most tasks, AMOS CT,
[te| +1 =25 < n = 32,768 for a 32 x 32 x 32 feature map.
With this design, the prior fusion module can adaptively
integrate the prior tokens and the feature maps with minor
additional computational costs. We implement Hermes-R by
inserting the cross-attention module at the end of each stage
of the ResUNet, i.e. after the convolution layers at 4x, 8,
and 16 x downsampling scales.

MedFormer. MedFormer [0] is a Transformer model pro-
posed for medical image segmentation. One key component
of MedFormer is its B-MHA attention module, which incor-
porates a compressed semantic map to reduce computation
complexity as well as enhance representation learning. In
Figure 1 (B), we show our implementation of merging the
prior fusion module into the B-MHA module of the Med-
Former backbone. In B-MHA, M is a semantic map that is
encoded and refined for rich semantic information within a
much lower spatial resolution compared to the feature map
X. We concatenate the semantic map M with the prior to-
kens p: Iny = [M, p]. The X and Iy, are linearly projected
to Q/K/V and Q/K/V respectively. To reduce the com-
putation, B-MHA shares the query and key of X and I/,
ie. Q = Kand Q = K, as the dot product of the query and
key in cross-attention measures the similarity of token pairs
of two inputs, which is symmetrical. The attention matrix is
reused by simply transposing the dot product matrix:



Vﬁw G

] {C_10OmO:

(B)

Figure 1. The implementation of prior fusion module for existing backbones. (A) The implementation for CNN backbones, like ResUNet [18].
We use a bi-directional cross-attention module to process both the feature map X and the prior tokens p. (B) The implementation for
MedFormer [6]. We merge the prior tokens into the semantic map of its B-MHA module. (C) The implementation for conventional attention
module, e.g. ViT [5] backbone. The normalization layers and residue connections for all three implementations are omitted for simplicity.

X = Attention(Q, K, V) = softmax(

Iy = Attention(Q, K, V) = softmax(

(QRT)" = (KQ")" = QK"

The normalization layer, FFN, and residue connections
are not included in the equation for simplicity. More details
can be found in the original MedFormer paper. We can then
obtain the updated semantic map and the posterior tokens
by splitting 1y = [M,p]. As |M| + |ti] + 1 < n, the
computation complexity is O(n). We implement Hermes-M
by incorporating the prior fusion module with the B-MHA
module on the 4x, 8x and 16 x downsampling scales within
the MedFormer backbone.

Computation comparison. In Table 1, we present the
GPU memory usage, number of parameters, and inference
time for Hermes with various backbones. For the Re-
sUNet backbone, thanks to the efficient bi-directional cross-
attention, Hermes-R only slightly increases GPU memory
usage and inference time, despite additional parameters due
to the cross-attention in the prior fusion module. For the
Transformer backbone MedFormer, Hermes-M demonstrates
almost identical consumption on memory, inference time,
and the number of parameters compared with MedFormer.
These results exemplify the efficacy of integrating the prior
fusion module into MedFormer’s existing attention module,
highlighting Hermes’ ability in leveraging different back-
bones without significantly impacting the required computa-
tional resources.

Table 1. Computation comparison between the Hermes and the
corresponding backbone. The memory consumption and inference
time are measured with an image size of 2 X 1 x 128 x 128 x 128
on one Nvidia A100 GPU. We report the average inference time
over 100 runs.

Model Memory/G | #Params/M | Inference Time/s
ResUNet 11.23 40.56 0.13
Hermes-R 11.54 59.61 0.16

MedFormer 11.44 43.20 0.19
Hermes-M 11.62 44.50 0.20

2. Supplement Experiments

Visual analysis on posterior prototypes. In Figure 2, we
show the heatmap visualization of each posterior prototype
with the output feature map of the decoder measured with
dot-product similarity. The visualization underscores the
quality of Hermes’s predicted posterior prototypes, which
adeptly capture the semantic essence of each category, align-
ing closely with the respective feature maps. Remarkably,
Hermes manages precise predictions even for small organs
with complex shapes. Take the right and left adrenal glands
as an example: despite their tiny size and irregular shape, the
posterior prototypes predicted by Hermes accurately reflect
their intricate edges.

Comparison with other methods. We provide the de-
tailed performance of other comparison methods on each
dataset, see Table 2. The ResUNet is trained under the
traditional paradigm. All comparison methods are trained
with the universal paradigm and are implemented with Re-
sUNet for a fair comparison. All methods under the universal
paradigm exhibit better performance compared with tradi-
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Figure 2. Heatmap visualization of each posterior prototype for the AMOS CT dataset. The brighter means the higher similarity. The yellow
boxes are the zoomed-in version of small organs for better visualization.

tionally trained ResUNet. Among universal method settings,
our Hermes-R shows a consistent advantage on the eleven
upstream datasets.

The detailed number of Figure 3 (A) in the main text
is presented in Table 3. All methods under the universal
paradigm show better than the ResUNet trained on each indi-
vidual dataset. Hermes demonstrates consistent advantages,
especially on difficult classes, modality PET, tumor&lesion
classes, and head&neck region tasks.

Ablation on the length of modality prior token. We
present an additional ablation study on the length of the
modality prior token, see Table 4. We follow the setting
in the ablation study section in the manuscript using the
ResUNet-Small backbone to implement Hermes. Given that
each modality encompasses a significant amount of variation,
we find that a modality prior of length 1 does not possess
adequate capacity to encode modality-related information.

We observe that longer modality tokens further improve the
performance, but the gains saturate as the length increases.
Therefore, we choose [ = 10 for our main experiments.
Additional analysis on the learned priors. In this sec-
tion, we briefly introduce the imaging principle and the typi-
cal visual appearance of structures in different modalities to
help interpret Hermes’s learned modality priors, see Fig. 3.
CT uses X-ray beams to create detailed cross-sectional
images of the body. In CT images, bones and other dense
structures appear very bright (high attenuation), while soft
tissues show up in varying shades of gray. Air and other gas-
filled spaces appear dark due to their low X-ray absorption.
CT is particularly effective for visualizing bones, lung tissue,
and detecting abnormalities like tumors or fractures.
T1-weighted MRI utilizes magnetic fields and radiofre-
quency pulses to produce detailed images of the body’s inter-
nal structures. In T1-weighted images, fat-containing tissues



Table 2. Comparison with other methods. ResUNet is trained with the traditional paradigm, while all comparison methods are reimplemented
with the ResUNet backbone for fair comparison and extend to the universal medical image segmentation paradigm.

Model BCV SST SSH LITST KiTST AMOSCT AMOSMR CHAOS M&Ms AutoPET DLBS AVG
ResUNet 84.36 8859 78.12  64.87 81.89 88.97 85.43 91.34 85.73 65.52 9431 82.65
Multi-decoder [4] | 83.90 89.18 7831  65.74 81.66 89.27 85.65 91.56 86.00 66.06 94.71 8291
DoDNet [21] 85.02 88.87 7849  65.84 82.65 88.86 86.22 91.35 85.97 67.49 9494  83.25
CLIP-driven [15] | 85.12 89.34 7850  65.37 82.83 88.94 86.39 91.81 86.04 66.78 95.17  83.30
UniSeg [20] 8532 8939 78.69 65.80 82.96 89.17 86.55 91.85 86.26 70.12 95.34  83.77
MultiTalent [19] | 85.18 89.18 80.01  65.33 82.25 89.13 86.57 91.55 86.28 71.51 95.75 83.88
Hermes-R 8599 89.50 80.62 67.49 85.53 89.63 86.78 92.01 86.94 73.69 96.21 84.95

Table 3. The detailed number of Figure 3 (A) in the main text. We compare traditionally trained ResUNet and other SOTA method under the
universal paradigm in six aspects. "Difficult Classes" are the classes that have Dice scores lower than 80 under the traditional paradigm.

Model Difficult Classes Modality PET Tumor&Lesion Region Head&Neck All Classes  All Datasets
ResUNet 70.67 65.52 70.76 78.13 84.54 82.65
Multi-decoder 71.42 66.06 71.15 78.31 84.70 82.91
DoDNet 72.17 67.49 71.99 78.48 84.93 83.25
CLIP-driven 72.11 66.78 71.64 78.50 85.05 83.30
UniSeg 72.46 70.12 72.96 78.69 85.27 83.77
MultiTalent 73.18 71.51 73.03 80.01 85.57 83.88
Hermes-R 74.35 73.69 75.57 80.62 86.16 84.95

Table 4. Ablation study on the length of modality prior token.
We report the average Dice on the seven datasets with Hermes
implemented with the ResUNet-Small backbone.

l
Avg Dice

1 5
82.93 83.16

10
83.37

20
83.38

appear bright, and water-rich tissues look darker. This con-
trast makes T1 MRI particularly useful for visualizing fine
anatomical details, such as the brain’s white and gray matter.

T2-weighted MRI also uses magnetic fields and radio
waves but with different timing parameters than T1, leading
to different tissue contrasts. In T2 images, fluid-containing
tissues appear bright, while fat appears darker compared
to T1 images. This characteristic makes T2 MRI ideal for
visualizing fluid-filled spaces and edema.

Cine MRI is a specialized form of MRI used to capture
moving images of the body. It is particularly useful in cardi-
ology for visualizing the heart’s movement and blood flow.
In cine MRI, fluid dynamics are emphasized, making it ex-
cellent for assessing cardiac function, valve abnormalities,
and congenital heart disease. The visualization of blood flow
and moving structures is a unique aspect of cine MRI.

PET (Positron Emission Tomography) scans use radioac-
tive tracers to detect metabolic activities within the body.
The patient is injected with a radiotracer, which accumulates
in areas of high metabolic activity. PET scanners detect the
gamma rays emitted by the tracer and use this data to con-
struct images. In PET images, areas of high tracer uptake,

such as rapidly growing cancer cells, appear brighter. PET
is highly effective in cancer diagnosis, as it can reveal the
metabolic activity of tumors.

In Fig. 3, we present the cosine similarity between the
modality priors as learned by Hermes. Consistent with imag-
ing principles, Hermes identifies CT as distinctly different
from MRI and PET modalities, owing to its unique X-ray
based imaging technique and contrasting tissue visualization.
This finding aligns with the principle that CT images bone
and dense structures more effectively, setting it apart from
MRI and PET techniques.

Regarding MRI sequences, Hermes notes a higher simi-
larity among them compared to CT, reflecting their shared
basis in magnetic resonance techniques, even though they
provide different tissue contrasts. Specifically, Hermes dis-
cerns a closer relationship between cine MRI and T2 MRI,
attributable to their shared emphasis on fluid content visu-
alization. This is in line with cine MRI’s application in
capturing moving structures like blood flow, similar to the
fluid-highlighting characteristics of T2 MRI images.

Additionally, Hermes finds PET imaging to be more simi-
lar to T2 and cine MRI than to T1 MRI. This observation can
be understood through PET’s focus on metabolic activities
and functional changes, aspects that are also emphasized to
some extent in T2 and cine MRI, despite their different fun-
damental principles. On the other hand, the lower similarity
with T1 MRI is logical, given T1 MRI’s distinct imaging
focus, primarily on fat visualization, as opposed to PET’s
metabolic activity emphasis.

These findings by Hermes are in accordance with the fun-
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Figure 3. Upper: The cosine similarity between the learned Hermes
modality priors. Lower: Illustration of each imaging modality.

damental principles of these imaging modalities. They indi-
cate that Hermes is effectively capturing the unique imaging
characteristics and tissue contrasts inherent to each modality,
demonstrating a sophisticated understanding of how different
imaging techniques visualize various tissues and physiologi-
cal processes.

3. Dataset details

In this section, we provide detailed information about each
dataset, including the volume of data, annotation categories,
data sources, as well as how we use them for training and
testing. At last, we explain how we designed our experiments
using these datasets.

BCY dataset. The BCV dataset [13] (Multi-Atlas Label-
ing Beyond the Cranial Vault) comprises 50 subjects with
abdominal CT scans, of which 30 training images are pub-
licly available. Thirteen abdominal organs were manually

Table 5. Datasets statistics. The upper datasets are for upstream
training and analysis. The bottom two datasets are for downstream
tasks on transfer learning, incremental learning, and generalization.

Dataset Body Region Modality Clinical Target ~ #Cls Size
BCV [13] Abdomen CT Organs 13 30
LiTS [2] Abdomen CT Liver & Tumor 2 131
KiTS [9] Abdomen CT Kidney & Tumor 2 210

AMOS CT [10] Abdomen CT Organs 15 300
SS T[14] Thorax CT Organs 6 50
SSH [14] Head & Neck CT Organs 22 50

AMOS MR [10] Abdomen MRI Organs 13 60

CHAOS [11] Abdomen  T1 & T2 MRI Organs 4 60
M&Ms [3] Cardiac cineMRI Structures 3 320
DLBS [17] Brain T1 MRI Structures 3 213
AutoPET [7] Whole body PET Lesions 1 1014
SegTHOR [12] Thorax CT Organs 3 40
MSD Pancreas [I]  Abdomen CT Pancreas & Tumor 2 281

labeled on a volumetric basis using the MIPAV software.
The labeled organs include the spleen, right kidney, left
kidney, gallbladder, esophagus, liver, stomach, aorta, infe-
rior vena cava, portal vein and splenic vein, pancreas, right
adrenal gland, and left adrenal gland. Some patients may
lack the right kidney or gallbladder, and therefore these or-
gans are not labeled. All scans were acquired for routine
clinical care from CT scanners at the Vanderbilt University
Medical Center (VUMC). The BCV dataset is used as one
of the seven datasets for upstream training. We randomly
select 75%/5%/20% of the publicly available images for
training/validation/testing.

LiTS dataset. The LiTS dataset [2] (Liver Tumor Seg-
mentation Challenge) comprises 201 computed tomography
(CT) images of the abdomen, with 131 training cases and
70 testing cases, where only the label of training cases are
publicly available. The LiTS dataset provides detailed an-
notation for tumors while offering coarse annotation for the
liver. The image data originates from various clinical sites,
including Ludwig Maxmilian University of Munich, Rad-
boud University Medical Center of Nijmegen, Polytechnique
& CHUM Research Center Montréal, Tel Aviv University,
Sheba Medical Center, IRCAD Institute Strasbourg, and
the Hebrew University of Jerusalem. The studied subjects
suffer from diverse liver tumor diseases, such as hepatocel-
lular carcinoma (HCC), as well as secondary liver tumors
and metastases originating from colorectal, breast, and lung
cancers. The tumors exhibit varying contrast enhancement,
including hyper and hypo-dense contrast. The images rep-
resent a mix of pre- and post-therapy abdominal CT scans,
acquired with different CT scanners and acquisition proto-
cols. The LiTS dataset is used as one of the seven datasets
for upstream training. We randomly select 75%/5%/20% of
the 131 training cases for training/validation/testing.

KiTS dataset. The KiTS19 dataset [9] comprises seg-
mented CT imaging and treatment outcomes for 300 patients
who underwent partial or radical nephrectomy for one or



more kidney tumors at the University of Minnesota Med-
ical Center between 2010 and 2018. Out of these cases,
210 have been released publicly, while the remaining 90
are kept private for evaluation purposes. The KiTS is used
as one of the seven datasets for upstream training. We ran-
domly select 75%/5%/20% of the 210 training cases for
training/validation/testing.

AMOS CT & MR dataset. The AMOS dataset [10] is
a large-scale collection of CT and MRI data from 600 pa-
tients diagnosed with abdominal tumors or abnormalities at
Longgang District People’s Hospital. The dataset comprises
500 CT and 100 MRI scans acquired from eight different
scanners and vendors, encompassing 15 organ categories:
spleen, right kidney, left kidney, gallbladder, esophagus,
liver, stomach, aorta, inferior vena cava, pancreas, right
adrenal gland, left adrenal gland, duodenum, bladder, and
prostate/uterus. For CT images, AMOS provides 200 scans
for training and 100 scans for validation, while for MRI
images, 40 scans are provided for training and 20 scans for
validation. Both AMOS CT and AMOS MR are used as two
of the seven datasets for upstream training. In line with the
AMOS benchmark paper [10], we report testing performance
on the official validation set and utilize 95%/5% training data
for model training/validation. As all images in the AMOS
MR validation set don’t have the annotation of bladder and
prostate, we only segment 13 organs for AMOS MR.

StructSeg dataset. The StructSeg dataset [14] is col-
lected from a challenge for the segmentation of organs-at-
risk (OAR) and gross target volume (GTV) of tumors of two
types of cancers, nasopharynx cancer and lung cancer, for
radiation therapy planning. We use Task 1 and 3, organ-at-
risk segmentation from head&neck and thorax CT scans in
our experiments, denoted as SS H and SS T respectively.
SS H has 22 OAR annotations from 50 nasopharynx can-
cer patients, including left eye, right eye, left lens, right
lens, left optical nerve, right optical nerve, optical chiasma,
pituitary, brain stem, left temporal lobes, right temporal
lobes, spinal cord, left parotid gland, right parotid gland,
left inner ear, right inner ear, left middle ear, right middle
ear, left temporomandibular joint, right temporomandibular
joint, left mandible and right mandible. SS T has 6 OARs
annotated on CT scans from 50 lung cancer patients, in-
cluding left lung, right lung, spinal cord, esophagus, heart,
and trachea. We split the scans into 75%/5%/20% for train-
ing/validation/testing.

CHAOS dataset. The CHAOS dataset [11] is collected
from a challenge for the precise segmentation of abdominal
organs. We use the data from Task 5: segmentation of ab-
dominal organs from MRI. Four organs, including the liver,
left kidney, right kidney, and spleen are annotated. They
provide three MR sequences, including T1-in-phase, T1-out-
phase, and T2-SPIR, for 20 patients. We treat different MR
sequences as separate images and split the dataset at the pa-

tient level into 75%/5%/20% for training/validation/testing.

M&Ms dataset. The M&Ms dataset [3] is from Multi-
Centre, Multi-Vendor and Multi-Disease Cardiac Segmenta-
tion (M&Ms) Challenge, which was organized as part of the
MICCAI 2020 Conference. This dataset cohort includes
patients with hypertrophic and dilated cardiomyopathies
and healthy subjects. All subjects were scanned in clini-
cal centres in three different countries (Spain, Germany, and
Canada) using four different MRI scanner vendors (Siemens,
General Electric, Philips, and Canon). The training set con-
tains 150 annotated images from two vendors (75 each),
while the testing set contains 170 cases (20 for the first
vendor and 50 each for the other three vendors). Three cate-
gories of annotation are 61 provided at the end-diastolic (ED)
and end-systolic (ES) 62 phase, including left ventricle (LV),
right ventricle (RV), and 63 left ventricular myocardium
(MYO). We use the official testing set for testing, and divide
the training set into 95% for training and 5% for validation.

DLBS dataset. The Dallas Lifespan Brain Study
(DLBS) [17] is designed to understand the antecedents of
preservation and decline of cognitive function at different
stages of the adult lifespan, with a particular interest in the
early stages of a healthy brain’s march towards Alzheimer
Disease. We use the 213 T1 MRI scans to segment the
cerebrospinal fluid, gray matter and white matter. Follow-
ing [16], we divide the 213 scans into 129 for training, 43
for validation, and 43 for testing.

AutoPET dataset. The AutoPET dataset [7] provides an-
notated Positron Emission Tomography/Computed Tomogra-
phy (PET/CT) studies, encompassing a significant collection
of 1014 whole-body Fluorodeoxyglucose (FDG)-PET/CT
datasets. This dataset includes 501 studies from patients diag-
nosed with malignant lymphoma, melanoma, and non-small
cell lung cancer (NSCLC), alongside 513 studies serving
as negative controls without PET-positive malignant lesions.
We divide the dataset at the patient level into 75%/5%/20%
for train/validation/testing.

SegTHOR dataset (SS T and SS H). The SegTHOR
dataset [12] aims at the thoracic organ-at-risk segmentation
in CT images. This dataset provides 4 OARs annotations
from 40 CT scans, including heart, aorta, trachea, and esoph-
agus. We use the SegTHOR dataset as a downstream task
to evaluate the generalization of models. We directly use
the upstream-trained model to make predictions on all 40
images and report the generalization performance.

MSD pancreas & tumor dataset. The MSD pancreas &
tumor dataset is a part of the Medical Image Segmentation
Decathlon (MSD) [1], an international challenge aimed at
identifying a general-purpose algorithm for medical image
segmentation. The competition encompasses ten distinct
datasets featuring various target regions, modalities, and
challenging attributes. MSD pancreas & tumor is one of
the datasets that is annotated for pancreas and tumors. The



shape and position of tumors vary greatly between patients.
The MSD pancreas & tumor dataset consists of 281 CT
images. We use it as a downstream task to evaluate models’
capacity for transfer learning and incremental learning. We
split the dataset into 214 samples for training, 10 samples for
validation, and 57 samples for testing. To evaluate the impact
of downstream data volume, we conducted experiments on
1%, 10%, 50%, and 100% of the 214 training samples. To
reduce the variability from the training sample selection, we
report the average performance over 5 runs for the 1% and
10% settings.

Experiment design. To substantiate the efficacy of the
proposed universal medical image segmentation paradigm,
we have meticulously curated these datasets, see Table 5.
These datasets were selected based on three main factors:
anatomical regions, imaging modalities, and clinical targets.
The careful selection of these upstream training datasets is
designed to provide comprehensive answers to the three re-
search questions originally posed in our introduction section.
For the downstream tasks, we chose the challenging MSD
pancreas & tumor dataset for transfer learning and incremen-
tal learning. The pancreas is a relatively small, elongated
glandular organ, while the shape and location of a pancreatic
tumor can greatly vary. As such, the segmentation difficulty
of this task is extremely high. Furthermore, this dataset is
comprised of a large number of images, with 281 CT scans,
allowing us to adequately test the model’s transfer learning
and incremental learning abilities under various downstream
data volumes. In addition, we select the SegTHOR dataset to
verify the model’s generalization performance. There is only
one thoracic dataset (StructSeg) in the upstream training.
The StructSeg and SegTHOR are both for thoracic OAR seg-
mentation and have three overlap categories of heart, trachea,
and esophagus. Evaluating performance on these overlap-
ping categories allows us to explore the universal paradigm’s
potential generalization ability to different anatomical re-
gions and analyze whether more abdominal tasks contribute
positively to the generalization of thoracic tasks.
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