
A. Proofs

Claim A.1. Let A 2 Am⇥n with m  n and rank(A) = m. Let W 2 Rm⇥m such that rank(ATW) = m. Then, we have

ATW(Ax� y) = 0 () AT (Ax� y) = 0.

Proof. Since rank(A) = m we have that AT (Ax�y) = 0 () Ax�y = 0 (e.g., multiply both sides of AT (Ax�y) = 0
from left by AT† = (AAT )�1A). Similarly, since rank(ATW) = m we have that ATW(Ax�y) = 0 () Ax�y = 0
(e.g., multiply both sides from left by (ATW)†). Thus we get the required result.

Claim A.2. Let A 2 Am⇥n with m  n. Let W 2 Rm⇥m be a positive definite matrix that shares eigenbasis with AAT .
Then, there exists a positive definite P 2 Rn⇥n such that

ATWA = P1/2ATAP1/2.

Proof. Let A = U⇤VT be the SVD of A, where ⇤ 2 Rm⇥n is rectangular diagonal, and U 2 Rm⇥m and V 2 Rn⇥n are
orthogonal matrices. By the assumptions on W we have W = U�UT , where � is diagonal and invertible. Thus, we have

ATWA = V⇤T�⇤VT .

Pick P = V�̃VT where �̃ 2 Rn⇥n is a diagonal matrix with the first m entries on its diagonal that are the same as � and
1’s (or any other positive values) in the lower n�m entries. We have

P1/2ATAP1/2 = V�̃
1/2

⇤T⇤�̃
1/2

VT = V⇤T�⇤VT ,

which concludes the proof.

Claim A.3. Denote by �1 the largest singular value of A. Let c  1/�2
1. Then, the update (21) with µt = 1 ensures reduction

in (24).

Proof. We begin by showing that under such choice of c, we have that g�t(·) = rx`WLS,t(·;y) is 1-Lipschitz. We prove it
by upper bounding the operator norm of the Hessian r2

x`WLS,t(·;y) by 1:

kr2
x`Wtk = kATWtAk (28)

 (1� �t)kAT (AAT + ⌘Im)�1Ak+ �tckATAk
 (1� �t) + �t = 1.

where in the first inequality follows from the triangle inequality and the second inequality follows from kAT (AAT +
⌘Im)�1Ak  1 and kATAk = 1/�2

1.
The claim is a consequence of the descent lemma for the gradient step x̃ = x � µtrx`WLS,t(x;y) when the step-size

equals 1 over the Lipschitz constant of g�t = rx`WLS,t, which is 1 in our case.
For completeness, we present this well-known result here. To simplify notation we denote `WLS,t by ` and omit de-

pendency on y. The 1-Lipschitzness of the gradient implies that krx`(x2) � r`(x1)k2  kx2 � x1k2 for all x2,x1.
Equivalently, this implies that for all x2,x1 we have

`(x2)� `(x1)  r`(x1)
T (x2 � x1) +

1

2
kx2 � x1k22. (29)

Recall that x̃ = x� µtr`(x), so using x1 = x and x2 = x̃ in (29), we get

`(x̃)� `(x)  �µtkr`(x)k22 + µ2
t
1

2
kr`(x)k22. (30)

Finally, substituting µt = 1 gives `(x̃)� `(x)  �1

2
kr`(x)k22 =) `(x̃) < `(x) whenever r`(x) 6= 0.



Theorem A.4. Consider the observation model (1) and estimating x⇤ via minimization of (2) with s(x) =
�

2
kDxk22. Assume

that: (a) ATA and DTD � 0 share eigenbasis; (b) the singulars value of A are in (0, 1], and not all equal (common case);
(c) ⌘ = 0 and c = 1. Then, bBP < bWLS < bLS, and vLS < vWLS < vBP.

Proof. Let us define the singular value decomposition (SVD) of the m ⇥ n matrix A = U⇤VT , where U is an m ⇥ m
orthogonal matrix whose columns are the left singular vectors, ⇤ is an m ⇥ n rectangular diagonal matrix with nonzero
singular values {�i}mi=1 on the diagonal, and V is an n⇥ n orthogonal matrix whose columns are the right singular vectors.
The assumptions on D imply that DTD = V�2VT � 0, where �2 is an n ⇥ n diagonal matrix of nonzero eigenvalues
{�2

i }ni=1.
Recall that we consider the cost function

fWLS(x) =
1

2
kW1/2(Ax� y)k22 +

�

2
kDxk22.

Due to the (strong) convexity of the cost function, the (unique) minimizer can be obtained simply by equating their gradients
to zero

rfWLS(x̃) = ATW(Ax� y) + �DTDx = 0

) x̂WLS = (ATWA+ �DTD)�1ATWy. (31)

Note that x̂LS and x̂BP are instances of this formula with W = Im and W = (AAT )�1, respectively. For the WLS under
consideration we have W = (1 � �)(AAT )�1 + �Im. In all these cases we have W = USUT where S is an m ⇥ m
diagonal matrix of positive values {si}mi=1 (eigenvalues of W).

From the conditions of the noise we have that E[e] = 0 and E[eeT ] = �2
eIm. Thus, similarly to the analysis in [38], the

MSE (conditioned on x⇤) can be expressed as
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��(ATWA+ �DTD)�1ATW(Ax⇤ + e)� x⇤��2
2

=
��(ATWA+ �DTD)�1ATWAx⇤ � x⇤��2

2
+ Ee

⇥
eTWA(ATWA+ �DTD)�2ATWe

⇤

=
���(ATWA+ �DTD)�1ATWA� In

�
x⇤��2

2
+ �2

eTr
�
(ATWA+ �DTD)�2ATW2A

�

=
���V

⇣
(⇤TS⇤+ ��2)�1⇤TS⇤� In

⌘
VTx⇤

���
2

2
+ �2

eTr
⇣
V(⇤TS⇤+ ��2)�2⇤TS2⇤VT

⌘

=
nX

i=1

⇣ �2
i si

�2
i si + ��2

i

� 1
⌘2

[VTx]2i + �2
e

nX

i=1

�2
i s

2
i

(�2
i si + ��2

i )
2

(32)

where si and �i with i > m are just used for notation convenience and are in fact zeros.
The first term in (32) is the squared bias and the second term is the variance. These expressions can be specialized to each

data-fidelity term by substituting the relevant S. Specifically, we have that the bias terms of the estimators are given by:
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where we used the fact that for W = (1� �)(AAT )�1 + �Im we have that si = (1� �)/�2
i + �.

By the theorem’s assumption �i 2 (0, 1] and not all are equal. Thus, we have that �2
i  (1 � �) + ��2

i  1 with
strict inequalities at some i. Therefore, to prove bias2BP < bias2WLS < bias2LS , it suffices to show that the function

f(x) =

✓
a

x+ a

◆2

with a > 0 is strictly monotonic decreasing on [0, 1], and this trivially holds.



Let us now consider the variances:
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Similarly to the way the bias terms where compared, since �2
i  (1 � �) + ��2

i  1 with strict inequalities at some, to

prove var2BP > var2WLS > var2LS , it suffices to show that the function f(x) =
x2

(x+ a)2
=

1

(1 + a/x)2
with a > 0 is

strictly monotonic increasing on (0, 1], and this trivially holds.

Claim A.5. Assume that rank(A) = m, the singular values of A are not all equal, ⌘ = 0, and denote by V 2 Rn⇥m an
orthonormal basis for the row-range of A. We have that

(VTr2
x`BPV) < (VTr2

x`WLSV) < (VTr2
x`LSV).

Proof. We can write the compact SVD of A as A = U⇤VT , where ⇤ 2 Rm⇥m is a diagonal matrix with nonzero singular
values {�i}mi=1 (indexed in decreasing order), U 2 Rm⇥m is an orthogonal matrix and V 2 Rn⇥m is the stated partial
orthogonal matrix. Note that r2

x`BP = AT (AAT )�1A, r2
x`LS = ATA, and r2

x`WLS = (1 � �)AT (AAT )�1A +
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B. Fast Pseudoinverse Implementations

In this section, we show that the pseudoinverse operation A† : Rm ! Rn can be implemented very efficiently for the cases
of image deblurring and image super-resolution (no need to compute and store the SVD of A). We note that there are other
cases where this operation can be easily implemented, such as image inpainting, computed tomography, and more. In image
inpainting we simply have that A† = AT . In fact, this is the case whenever A is a tight-frame (i.e., when AAT = Im).
In this case, the BP and LS update steps are essentially equivalent, and therefore do not require the special treatment that is
considered in the paper. In computed tomography, the pseudoinverse can be implemented via fast (filtered) inverse Radon
transform, whose details are out of the scope of this paper. Moreover, as mentioned in the paper, for general A one can
implement the operation A† = AT (AAT )† with low computational complexity by the conjugate gradients methods, where
full rank AAT (and AAT + ⌘Im otherwise) can be “inverted” using few conjugate gradient iterations, which only require
applying the operations A and AT and bypass the need of matrix inversion or SVD.

B.1. Image Deblurring

In image deblurring the measurement operator A 2 Rn⇥n (note that m = n) is a convolution with some blur kernel k, i.e.,
Ax = x~ k. Under the assumption of circular convolution (which merely affects boundary pixels and can be addressed by
padding), we have that A is a circulant matrix, and thus can be diagonalized by the discrete Fourier transform. Therefore, this
convolution operation can be computed as element-wise multiplication in the discrete Fourier domain, which is efficiently
implemented via Fast Fourier Transform (FFT). Specifically, for z 2 Rn we have that Az = F�1 (F(k)F(z)), where F
denotes the FFT. Similarly, AT , which is convolution with flipped k, can be applied as AT z = F�1

⇣
F(k)F(z)

⌘
. Lastly,

the operation AT (AAT + ⌘In)
�1z can be efficiently computed as

AT (AAT + ⌘In)
�1z = F�1

 
F(k)F(z)

|F(k)|2 + ⌘

!
. (35)

As done throughout the paper, we use notation of 1D signal vector for simplification, but the extension to 2D signals, 2D
convolutions, and 2D FFT, is straightforward.

B.2. Image Super-Resolution

In image super-resolution the measurement operator A 2 Rm⇥n (note that m = n) is a composition of convolution with
some blur kernel k and subsampling by some scale factor s, i.e., Ax = [x~ k] #s.

Under the assumption of circular convolution (which merely affects boundary pixels and can be addressed by padding)
and integer s = n/m, we have A = SB, where B 2 Rn⇥n is a circulant matrix and S 2 Rm⇥n. Therefore, the operation
A = SB can be implemented by FFT-based filtering followed by subsampling and the operation AT = BTST can be
implemented by upsampling followed by FFT-based filtering. Moreover, AAT = SBBTST is circulant and essentially
performs filtering with the kernel k0 =

⇥
F�1

�
|F(k)|2

�⇤
#s. Lastly, the operation AT (AAT + ⌘Im)�1z can be efficiently

computed as

AT (AAT + ⌘Im)�1z = F�1

✓
F(k)F

✓
F�1

✓
F(z)

|F(k0)|2 + ⌘

◆�x?
s

◆◆
. (36)

Again, extension from 1D to 2D is straightforward.



C. More Experimental Details and Results

In this section we present more details on the experiments, and more quantitative and qualitative results, which have not been
stated in the main body of the paper due to space limitation. Our code is available at https://github.com/tirer-
lab/DDPG.

Table 4. Super-resolution and deblurring PSNR [dB] (") and LPIPS (#) results on CelebA-HQ 1K. N/A marks applicability limitation of:
(1) DDNM to noiseless settings and (2) DDRM to settings where the SVD is given and stored. (More details in the text). Note that SwinIR
and Restormer are task-specific methods, and are thus not flexible to handle most of the examined tasks.

Task Method SwinIR (SR) Restormer (Deb.) DDRM DPS (1000 NFEs) DiffPIR DDNM IDPG (ours) DDPG (ours)

Bicub. SRx4 �e=0 33.26 / 0.100 — 31.64 / 0.054 29.39 / 0.065 30.26 / 0.051 31.64 / 0.048 32.66 / 0.111 31.60 / 0.052
Bicub. SRx4 �e=0.05 27.30 / 0.213 — 29.26 / 0.090 27.49 / 0.086 27.44 / 0.085 N/A 29.89 / 0.155 29.39 / 0.105

Gauss. Deb. �e=0 — 29.32 / 0.100 42.49 / 0.006 31.25 / 0.055 32.97 / 0.041 45.56 / 0.002 45.58 / 0.002 45.46 / 0.002

Gauss. Deb. �e=0.05 — 25.28 / 0.431 30.53 / 0.074 27.75 / 0.084 28.89 / 0.074 N/A 31.08 / 0.150 30.41 / 0.068

Gauss. Deb. �e=0.1 — 21.67 / 0.652 28.79 / 0.088 26.67 / 0.097 27.59 / 0.083 N/A 29.28 / 0.146 29.18 / 0.080

Motion Deb. �e=0.05 — 19.03 / 0.530 N/A 19.63 / 0.227 27.96 / 0.102 N/A 29.73 / 0.134 29.02 / 0.082

Motion Deb. �e=0.1 — 16.32 / 0.813 N/A 19.64 / 0.231 26.23 / 0.132 N/A 27.86 / 0.166 27.74 / 0.099

C.1. Hyperparameter setting

Figure 5. �t for � = {1, 7}.

As mentioned in Section 3.4, in our experiments we do not modify the denoising diffu-
sion model (DDM) hyperparameters {�t} compared to other methods. Specifically, we
have that this set is composed of linear scheduling from �start = 0.0001 to �end = 0.02.
The parameters {↵̄t} are determined by {�t}. As explained in the paper, we use {↵̄t}
of size T = 100 to set {�t} via �t = ↵̄�

t , where � � 0 is a single hyperparameter that
we tune. Figure 5 shows the resulting {�t} for two values of �. Note that if �e = 0 we
simply set �t = 0, so we do not need to tune �.

Another hyperparameter is ⌘, which regularizes the inversion in the operation AT (AAT +⌘Im)�1. We scale it according
to the noise level and define: ⌘ = max(1e�4, (2�e)

2⌘̃), where ⌘̃ is the hyperparameter that we tune. Note that if �e = 0
we do not need to tune ⌘̃. Setting c = 1, it is left to set the step-size {µt} and, specifically for DDPG, also ⇣ 2 [0, 1]. The
step-size that is used is either µt = 1 or µt = (1� ↵̄t�1)/(1� ↵̄t) := µ⇤

t , which reduces from 1 significantly only close to
the last iterations.

As mentioned in Section 4, the tasks that we consider are common in the literature. For super-resolution, we consider
bicubic downsampling with scale factor 4, as in [16, 41]. For deblurring, we consider Gaussian blur kernel with standard
deviation 10 clipped to size 5 ⇥ 5, as in [16, 41]. For deblurring, we also consider motion blur kernels generated using the
same procedure (with intensity value 0.5) as in [6, 45]. For each observation model we consider different levels of Gaussian
noise out of {0, 0.05, 0.1}.

Let us state the hyperparameters for Section 4.1 (examining the core approach). IDBP is tuned with ⌘̃ = {32, 6} for
deblurring and SR, respectively. For �e = 0, IDPG reduces to IDBP (�t = 0), otherwise, for SR with �e = 0.05 it is
used with ⌘̃ = 0.2 and � = 16, and for Gaussian deblurring it is used with ⌘̃ = 0.6 and � = {8, 6} for �e = {0.05, 0.1},
respectively. In all these cases we use µt = 1. Additionally, for motion deblurring in Section 4.2, IDPG is tuned with
� = {12, 14} and ⌘̃ = {0.9, 1} (in this case, larger ⌘̃ for larger noise allows increasing �).

Lastly, the hyperparameters of DDPG are listed in Table 5.

Table 5. DDPG hyperparameters.

Task CelebA-HQ ImageNet

Bicub. SRx4 �e=0 ⇣ = 0.7, µt = 1 ⇣ = 0.7, µt = 1

Bicub. SRx4 �e=0.05 � = 10.0, ⇣ = 0.8, ⌘̃ = 0.3, µt = µ⇤
t � = 6.0, ⇣ = 1.0, ⌘̃ = 0.3, µt = µ⇤

t

Gauss. Deb. �e=0 ⇣ = 1.0, µt = 1 ⇣ = 1.0, µt = 1

Gauss. Deb. �e=0.05 � = 8.0, ⇣ = 0.5, ⌘̃ = 0.7 , µt = µ⇤
t � = 10.0, ⇣ = 0.4, ⌘̃ = 0.7 , µt = µ⇤

t

Gauss. Deb. �e=0.1 � = 5.0, ⇣ = 0.6, ⌘̃ = 0.7 , µt = µ⇤
t —

Motion Deb. �e=0.05 � = 5.0, ⇣ = 0.6, ⌘̃ = 0.6 , µt = µ⇤
t � = 6.0, ⇣ = 0.6, ⌘̃ = 0.7, µt = µ⇤

t

Motion Deb. �e=0.1 � = 5.0, ⇣ = 0.6, ⌘̃ = 0.6, µt = µ⇤
t � = 3.0, ⇣ = 0.6, ⌘̃ = 0.4, µt = µ⇤

t

https://github.com/tirer-lab/DDPG
https://github.com/tirer-lab/DDPG


C.2. More quantitative comparisons for deblurring and super-resolution

In this subsection, we report results of more competing methods for the same experimental settings that appear in the main
body of the paper.

We examine two representative deep learning methods that are based on per-task supervised learning: SwinIR [17] for
super-resolution and Restormer [42] for deblurring. Note though that, as discussed in the paper, we observed that these
methods do not generalize well to test sets that are not exactly aligned with their exhaustive training procedure. Specifically,
while SwinIR performs well (in terms of PSNR but not in terms of LPIPS) for the noiseless SRx4 with bicubic downsampling,
for which it has been exactly trained, it exhibits massive performance drop in the presence of noise. Similarly, we could not
managed to get good results with the Restormer, presumably because its training phase considered a specific deblurring
dataset. In fact, the behavior of these methods motivates using deep learning for learning the signal prior separately from the
observation model, as we discussed in the introduction section.

The results for CelebA-HQ 1K test set are presented in Table 4 (which is an extended version of Table 2). The discussion
on the results, as made in the main body of the paper, still carries on. Both our IDPG and DDPG are flexible to the observation
model. IDPG presents good PSNR results and DDPG balances it with good LPIPS results (and better perceptual quality).
In general, our DDPG demonstrates competitive LPIPS results and better PSNR results than the alternative DDM-based
methods. The only reference methods that are as flexible to the observation model as DDPG are DiffPIR [45] and DPS [6].
However, DiffPIR yields significantly lower PSNR and DPS both yields lower PSNR and is also extremely slow.

Figure 6. Failure of DDNM+
for Gaussian deblurring with noise
level 0.05.

Applicability issues of DDNM+. As mentioned in Section 4, DDNM+ that was proposed in
[41] for handling noisy y, via SVD (!), seems to be heavily tied to a specific downsampling
task (without bicubic kernel) and does not support the considered tasks. Indeed, when running
the official DDNM+ code for bicubic SR with noise we get “not supported” assert, and when
running it for deblurring Gaussian kernel with noise level 0.05 (as in Figure 3) it completely
fails, e.g., see Figure 6. Thus, DDNM+ cannot be applied to the examined settings (and all the
efforts to fix it failed).

Low-noise scenarios. Note that the fact that our approach handles well both noiseless settings and settings with high noise
levels implies that it can be readily used for settings with low noise levels. In Table 6 we present the results for �e = 0.01,
which show the advantages of our approach also in low noise scenarios. In all these cases we use µt = 1. For SR we use
� = 300, ⇣ = 1.0, ⌘̃ = 1.0. For Gaussian deblurring we use � = 11, ⇣ = 0.6, ⌘̃ = 1.0. For motion deblurring we use
� = 50, ⇣ = 0.5, ⌘̃ = 6.0.

Table 6. PSNR and LPIPS for CelebA-HQ 1K with �e = 0.01. DDRM is not applicable for motion deblur. DDNM(+) is not applicable.

Task Method DDRM DPS DiffPIR IDPG (ours) DDPG (ours)

Bicub. SRx4 �e=0.01 31.09 / 0.066 29.11 / 0.068 29.62 / 0.058 31.99 / 0.127 31.81 / 0.092
Gauss. Deb. �e=0.01 33.90 / 0.045 30.27 / 0.060 32.01 / 0.060 34.26 / 0.071 32.20 / 0.044

Motion Deb. �e=0.01 N/A 19.52 / 0.228 31.72 / 0.050 33.29 / 0.079 32.55 / 0.045

C.3. Sparse-view computed tomography

In this subsection, we report the performance of our DDPG for sparse-view computed tomography (SV-CT). We compare our
method against the recent MCG method [5], which has an official implementation for such task, based on score-SDE model
[33], pre-trained on the 2016 American Association of Physicists in Medicine (AAPM) grand challenge dataset resized to
256 ⇥ 256 resolution. As done in [5], the measurement operator A simulates the CT measurement process with parallel
beam geometry with evenly-spaced 180 degrees (essentially, implemented by applying Radon transform on x⇤). The test set
consists of 100 held-out validation images from the AAPM challenge.

To demonstrate the ease of integrating our approach in SDE-based sampling schemes (and not only in DDPM/DDIM
schemes), we make minimal modifications to the MCG implementation, and essentially, merely replace their data-fidelity
guidance with our g�t . Specifically, we keep using T = 2000 iterations as in MCG (though, this number can be reduced)
with the same set of noise levels {�̃t} 2 (0, 1] that decreases along the iterations. Conveniently, we set the step-size µt = �̃t,

and �t =

 
1� �̃t

1�min�̃

!�

. Thus, we can still tune only a scalar � to determine {�t} for our DDPG. No ⇣ needs to be tune, as

the estimated noise in not injected (equivalently ⇣ = 1). Regarding the regularized back-projection operation (used in gBP ),
in the context of CT, it is typically being referred to as “filtered back-projection” (FBP) and it is implemented by incorporating



Ground truth FBP MCG DDPG

Ground truth FBP MCG DDPG

Figure 7. AAPM: Sparse-view CT (30 views). Top: �e = 0; bottom: �e = 0.001kAx⇤k2.

Ramp filter with the inverse Radon transform. The Ramp filter is triangular in frequency domain with values between 0 and
1 that attenuates low frequencies and thus emphasizes details. We impose the regularization on this BP operation via the
hyperparameter ⌘ simply by upper bounding the filter in frequency domain by 1/⌘ (so, e.g., ⌘ = 0 implies no regularization).
As for the LS step (used in gLS), the largest eigenvalue of A, denoted by �1 in the main body of the paper, is larger than 1
for CT, so we set c = 1/�2

1 instead of c = 1. To conclude, we have only two hyperparameters, � and ⌘, that we manually
tune for DDPG.

Table 7. Sparse-view CT (30 views): PSNR
[dB] (") and SSIM (") results on AAPM
dataset.

Task Method MCG DDPG (ours)

CT, �e = 0 34.98 / 0.905 36.01 / 0.913

CT, �e > 0 23.63 / 0.480 26.75 / 0.761

We consider the SV-CT with 30 views (as in [5]). We examine the case where
we do not add additional Gaussian noise e to Ax⇤. Yet, we observed that some
ground truth images are already noisy and, presumably, this is detrimental for
pure BP-based guidance. We also examine the case where the additional noise
level is 0.001kAx⇤k2. We use � = 1, ⌘ = 0 and � = 0.1, ⌘ = 10 for the
two cases, respectively. The quantitative results (PSNR and SSIM metrics) are
presented in Table 7. They show that DDPG outperforms MCG. Qualitative
results, which are presented in Figure 7, visually demonstrate the superiority of
DDPG over MCG in recovering finer details and robustness to noise.

C.4. More qualitative results

In what follows, we present more visual results for the different tasks. In the noiseless cases many of the methods perform
well, so we recommend the reader to focus on the results for the noisy settings, which are also the focus of the paper.
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Figure 8. CelebA-HQ: SRx4 for noiseless bicubic downsampling.
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Figure 9. ImageNet: SRx4 for noiseless bicubic downsampling.
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Figure 10. CelebA-HQ: SRx4 for bicubic downsampling with noise level 0.05.
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Figure 11. ImageNet: SRx4 for bicubic downsampling with noise level 0.05.
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Figure 12. CelebA-HQ: Deblurring for noiseless Gaussian blur.
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Figure 13. ImageNet: Deblurring for noiseless Gaussian blur.
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Figure 14. CelebA-HQ: Deblurring for Gaussian blur with noise level 0.05.
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Figure 15. CelebA-HQ: Deblurring for Gaussian blur with noise level 0.1.
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Figure 16. ImageNet: Deblurring for Gaussian blur with noise level 0.05.
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Figure 17. CelebA-HQ: Deblurring for motion blur with noise level 0.05.
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Ground truth Observed image DPS DiffPIR IDPG DDPG

Figure 18. CelebA-HQ: Deblurring for motion blur with noise level 0.1.
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Figure 19. ImageNet: Deblurring for motion blur with noise level 0.05.
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Figure 20. ImageNet: Deblurring for motion blur with noise level 0.1.
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