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A. Broader Impact
This study underscores the critical importance of conduct-
ing experiments rigorously to derive valid conclusions. By
addressing the limitations in prior research and cautioning
against overreliance on bias measures without comprehen-
sive validation, this work highlights the necessity of robust
experimental methodologies to advance our understanding
of neural network generalization. It is well understood
that correlation does not prove causality. While this study
mainly challenges established correlations for a more nu-
anced understanding of the influences of biases on general-
ization, it also presents new ones (e.g., high-frequency bias)
- it is important that future works equally rigorously evalu-
ate our findings and try to break the causality.

Transferability and Domain-Specific Considerations.
This study explores biases in the ImageNet classification
problem. While this dataset and problem are representa-
tive of a significant portion of computer vision research, our
(and previous) findings may be limited in their transferabil-
ity to other problems. For example, while there is a theo-
retical grounding for shape bias in object recognition, it is
not intuitively clear if this applies to medical classification
tasks such as melanoma detection. We ask researchers to
exercise caution when extrapolating findings from specific
contexts to broader applications and encourage a rigorous
evaluation of model performance on their specific problem
- in particular, in safety-critical domains where human lives
are at stake.

B. Tables of Results
Table 1 contains an overview of all our models with detailed
performance on every benchmark (i.e., all datasets and the
adversarial attack). It also serves as a legend for the markers
in all our scatter plots (main paper and Appendix). Table 2
contains the corresponding measurements of our studied bi-
ases.

C. Details about Generalization Benchmarks
In distribution (ID).
• The ImageNet (IN) [45] validation set is the standard test

dataset, containing 50,000 images with 1,000 different
classes.

• ImageNet v2 (IN-v2) [43] is a newer 10,000 images test
set sampled a decade later following the methodology of
the original curation routine.

• ImageNet-ReaL (IN-ReaL) [2] is a re-annotated version of
the original ImageNet validation set. It assigns multiple
labels per image and contains multiple corrections of the
original annotations.

Robustness.
• ImageNet-C (IN-C) [21] is a dataset consisting of 19 syn-

thetic corruptions applied to the original ImageNet vali-
dation set under increasing severity. The original proto-
col suggests averaging the error over all corruptions and
severities normalized by the error of AlexNet [30] on the
same. Contrary, we simply report the mean accuracy over
all 19 corruptions and severity levels2.

• ImageNet-C̄ (IN-C̄) [36] extends IN-C by adding 10 new
corruptions which were chosen to be perceptually dissim-
ilar but conceptually similar to the corruptions in IN-C.
We report the mean accuracy akin to IN-C.

• ImageNet-A (IN-A) [24] contains 7,500 additional images
belonging to 200 ImageNet classes that are naturally hard
to classify for ImageNet models and are, thus, posing nat-
ural adversarial examples.

Concepts.
• ImageNet-Renditions (IN-R) [23] is a dataset of 30,000

images of 200 different ImageNet classes in different
styles, such as cartoons, paintings, toys, etc.

• ImageNet-Sketch (IN-S) [60] is a dataset of over 50,000
hand-drawn sketches belonging to all ImageNet classes.
Semantically it can be seen as a subset of IN-R.

2The results remain comparable by a simple linear transformation



• Stylized ImageNet (SIN) [17] contains ImageNet valida-
tion images that have been stylized using different artistic
filters to destroy texture information. We use the official
16-class subset given in [18].

Adversarial Robustness. We use a Project Gradient De-
scent (PGD) [35] attack to adaptively evaluate robustness.
As models trained without adversarial training [35] are
highly susceptible to such attacks, we attack with a reduced
budget of ✏ = 0.5/255 under `1 norm, using 40-steps with
↵ = 2/255. This benchmark is an important data point due
to its adaptive nature. While in theory, a model may overfit
a static dataset due to a finite number of test samples, (ideal)
adaptive benchmarks would not affected.

D. Results on ViT
In line with our results on ResNet-50, we provide results on
ViT-B/16 [11] in Fig. 8. Unlike most ViTs, these models
are exclusively trained on the ILSVRC2012 subset of Im-
ageNet. The models originate from AugReg [50], Masked
Autoencoders (MAE) [20], DINO [6], data-efficient image
transformers (DeiT) [57], and sharpness-aware minimizers
(SAM) [9].

E. Detailed Plots for the Analysis
In Sec. 5.1 we discuss the correlation between the perfor-
mance on IN-A and the shape bias. We provide the plot
for this in Fig. 9. As discussed, only strong texture-biased
models show improvements in IN-A performance.

Additionally, we discuss in Sec. 5.2 the non-causal - and
in particular non-functional/non-injective - relationship be-
tween high-frequency bias and generalization for AT mod-
els. In Fig. 10 we show the same results as in the main paper
(Fig. 5) but limited to AT models to show the trend more
clearly. Also, note how there is also a non-functional/non-
injective relationship to the attack budget ✏ (corresponding
to the marker size).

We also discuss the statistical correlation between our
benchmarks in the main paper (Sec. 4). In Fig. 15 we addi-
tionally provide scatter plots between all benchmark pairs.
We also show the distribution of reached accuracy on all
benchmarks in Fig. 11, and provide an overview of the sta-
tistical correlation between our biases in Fig. 12 which we
use to discuss the relationship between shape bias and spec-
tral biases in Sec. 6.

F. Changes to the Critical Band Test
A cornerstone of the initial study [52] is the evaluation of
classification accuracy on noise-modified subsets of Ima-
geNet. Each subset contains on average only 30 random Im-
ageNet samples that are gray-scaled, contrast-reduced, and

Figure 8. Biases vs. Generalization on ViT-B/16-based models.
Orange markers represent the ViTs, gray ones are ResNet-50s.

introduced to Gaussian noise at specified frequencies and
varying intensities. In contrast, we use all 50,000 ImageNet
samples for each subset (and apply the same transforma-
tions). This way, we get less noisy results by testing more
samples and making sure that all subsets contain the exact
same images. Then, the original test measures the accuracy
against 16 super-classes for each subset. This was mainly
done for comparability reasons for the same study with the
human subjects. Since we do not compare to human trials,



Figure 9. Shape Bias vs. IN-A. Only strongly texture-biased
models show significant improvements but the most texture-biased
model is not the best IN-A model. Markers indicate models as de-
scribed by the legend in Tab. 1.

Figure 10. Spectral Biases vs. Generalization only on
adversarially-trained (AT) models. Markers indicate models as
described by the legend in Tab. 1. Marker size correlates with the
attack budget ✏ during training.

we measure the common top-1 accuracy against all 1,000
classes. Finally, the critical band is measured by a fitted
Gaussian function to the resulting heatmaps. The authors
binarized the heatmaps by performance with a threshold of
50%. As we discussed in Sec. 3 this is not ideal for models
that are contrast-sensitive (e.g., AT models) and does not
allow evaluation of such models. Thus, we normalize the
heatmap by the maximum accuracy over all tests prior to
the curve fitting. Under our methodology, this corresponds
to normalization with the accuracy on the contrast-reduced
images (but not under the original test where the random
samples for each subset introduce noise).

For completeness, we have also evaluated our model
zoo with the original method and the results are shown
in Fig. 16. Additionally, to the exact same evaluation

Figure 11. Performance distribution of the model zoo on all
individual benchmarks.

Figure 12. Correlations between biases. Correlations measured
by Spearman r. We set non-significant correlations with p � 0.05
to 0.

(Fig. 16a) we also apply normalization (Fig. 16b). Under
the original condition, we see no reasonable correlation for
any bias except when limiting the study to AT models. For
the normalized study, we again see no correlations between
any bias for all models, except for ID and Robustness which
show some correlation to the center frequency. However,
the correlation is mostly determined by the tail of AT mod-
els - removing these models would break the correlation
and, thus, make a causal connection highly unlikely.

In Fig. 16c we show the scatter plots between IN-1k and
IN-16 obtained results and do not see a correlation indicat-



ing that the results obtained by our method deviate from the
original test. While our modifications may not be perfect
either (e.g., both our and Subramanian et al. [52] arbitrarily
pick 50% as threshold) our modifications are theoretically
grounded and, thus, introduce an improved measurement of
the critical band for models.

G. General Observations on the Low/High-
Pass Data

In this section, we want to provide some high-level find-
ings on our low/high-pass data test (based on Fig. 13).
Contrastive learning models underperformed the baseline in

Figure 13. Frequency band-pass test on ImageNet accuracy using
low-pass (left) and high-pass (right) filters with increasing cutoff
frequency. The distance to the original image decreases with in-
creasing cutoff.

low-frequency bias but performed on par for high-frequency
bias. We cannot prove this to be indicative of a short-
coming of contrastive learning, as we primarily benchmark
older techniques that perform worse than supervised learn-
ing because newer methods are almost exclusively designed
for ViTs. Still, this may deserve some attention in future
works. Some augmentation techniques lead to an unrea-
sonably strong high-frequency bias. This frequency band
contains limited information and is almost imperceivable to
humans without normalization (Fig. 7). Nonetheless, these
models seem to be able to classify a non-negligible amount
of samples. This may be related to frequency shortcuts [62]
and, in fact, be less desirable. On the other hand, we also see
that augmentation improves low-frequency bias and over-
all the strongest performance there is achieved by an aug-
mentation model (DEEPAUGMENT + AUGMIX [23]). This
training category also contains the most models that signif-
icantly deviate from the otherwise prevalent low-frequency
bias. Newer training recipes seem to mostly improve high-
frequency biases, without significant changes to the low-
frequency bias. SIN-only training reduces low-frequency
bias but significantly raises performance in mid-bands and
sometimes even outperforms augmentation on some spe-
cific cutoffs. Notably, all models make significant improve-
ments on the lowest 1% of the spectrum, with training

recipes showing the least and AT the largest leaps. Gains
from additional high-frequency information saturate much
earlier for almost all models.

H. Implementation Details
All evaluations were performed with Python 3.10.12, Py-
Torch 2.0.1, CUDA 11.7, and cuDNN 8500 on 4x NVIDIA
A100-SXM4 GPUs.

H.1. Data Preprocessing Pipeline
We use the same data processing pipeline for all models to
ensure a fair comparison. We resize the smaller edge of
the inputs to 256 px and the other edge with the same ratio
using bilinear interpolation, then center-crop to 224 ⇥ 224
px. Channel-wise normalization is applied as done during
training - typically, this is the mean and std over all samples
of the ImageNet dataset.

The samples in IN-C̄/C are preprocessed by default,
there we skip the the resizing and cropping. We want to
point out that some prior also apply the above transforma-
tions to these datasets. As discussed in Sec. 3 this is ques-
tionable because it results in undersampling, and thus loss
of details, and inconsistent evaluation compared to the clean
ImageNet dataset and approaches using “correct” prepro-
cessing.

H.2. Implementation of the Frequency Filter
Let F denote the Fast-Fourier Transformation (including
shifting the zero-frequency component to the center) and
F�1 the inverse operation, then we obtain the frequency
filtered sample X 0 from an input sample X as follows:

X 0 = F�1(F(X) �Mf ) (1)

Mc denotes the frequency mask (filter) in the Fourier space
parameterized by the cutoff frequency f implemented as
follows:

1 h, w = X.shape[-2:]
2 cy, cx = h // 2, w // 2
3 ry = int(cutoff_freq * cy)
4 rx = int(cutoff_freq * cx)
5 if lowpass:
6 mask = torch.zeros_like(X)
7 mask[:, cy-ry:cy+ry, cx-rx:cx+rx] = 1
8 else:
9 mask = torch.ones_like(X)

10 mask[:, cy-ry:cy+ry, cx-rx:cx+rx] = 0

Listing 1. Frequency Mask Computation

An example of the resulting samples can be found in
Fig. 14.
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Figure 14. Visualization of the low/high-pass filtered data at cutoff frequency f on one ImageNet sample.

Table 1. Performance of ResNet-50 models on our generalization benchmarks.

Top-1 Test Accuracy [%] (")

In Distribution Robustness Concepts Adv.
Model Category IN IN-ReaL IN-V2 IN-A IN-C IN-C̄ IN-R IN-S SIN PGD

• Original Baseline [19] baseline 76.15 86.50 63.14 0.03 41.12 39.70 36.16 24.09 37.12 18.39
 PGD-AT (`2, ✏=0) [35, 47] adversarial training 75.81 88.65 63.70 1.85 40.90 39.48 35.76 23.50 34.38 18.88
 PGD-AT (`2, ✏=0.01) [35, 47] adversarial training 75.67 84.97 63.64 1.69 42.13 39.78 36.85 24.22 38.50 30.56
 PGD-AT (`2, ✏=0.03) [35, 47] adversarial training 75.77 87.42 63.33 1.92 42.25 39.72 36.71 24.60 38.50 40.05
 PGD-AT (`2, ✏=0.05) [35, 47] adversarial training 75.58 84.66 62.93 1.79 41.66 40.18 37.28 24.69 40.00 46.86
 PGD-AT (`2, ✏=0.1) [35, 47] adversarial training 74.79 86.20 62.44 1.88 41.91 39.35 37.61 24.70 39.25 53.76
 PGD-AT (`2, ✏=0.25) [35, 47] adversarial training 74.14 85.28 61.65 1.96 42.02 39.58 38.23 25.31 40.88 61.23
 PGD-AT (`2, ✏=0.5) [35, 47] adversarial training 73.17 86.50 59.97 2.08 40.82 39.23 38.94 24.21 43.88 64.30
 PGD-AT (`2, ✏=1) [35, 47] adversarial training 70.42 84.36 56.95 2.09 38.79 37.90 38.95 23.68 44.12 64.37
 PGD-AT (`2, ✏=3) [35, 47] adversarial training 62.83 75.77 48.91 1.87 34.60 34.83 36.99 20.93 41.75 59.47
 PGD-AT (`2, ✏=5) [35, 47] adversarial training 56.14 74.54 42.49 1.77 30.65 31.15 33.09 17.24 39.00 53.63

PGD-AT (`1, ✏=0.5) [35, 47] adversarial training 73.74 84.36 61.38 2.29 40.11 40.04 39.39 24.68 43.88 65.11
PGD-AT (`1, ✏=1.0) [35, 47] adversarial training 72.04 83.44 59.21 2.20 38.82 39.72 40.96 24.51 44.00 66.39
PGD-AT (`1, ✏=2.0) [35, 47] adversarial training 69.09 82.52 56.15 2.39 37.49 38.85 39.33 23.10 45.75 65.25
PGD-AT (`1, ✏=4.0) [35, 47] adversarial training 63.87 78.83 51.31 2.29 33.71 36.56 38.92 21.87 43.25 61.22
PGD-AT (`1, ✏=8.0) [35, 47] adversarial training 54.53 71.78 41.86 2.11 28.78 31.91 34.84 18.57 40.00 52.57

N AugMix (180ep) [22] augmentation 77.53 88.96 65.42 3.65 50.77 46.16 41.03 28.49 45.50 30.96
DeepAugment [23] augmentation 76.65 86.81 65.20 3.40 54.40 48.39 42.25 29.50 49.12 32.51
DeepAugment+AugMix [23] augmentation 75.80 86.20 63.65 3.85 59.53 51.34 46.79 32.62 57.50 40.40

• Noise Training (clean eval) [29] augmentation 67.22 83.44 54.67 2.43 44.40 39.48 36.64 19.99 47.12 48.27
NoisyMix [12] augmentation 77.05 89.57 64.28 3.32 54.23 50.62 45.77 31.18 49.38 50.70

 OpticsAugment [38] augmentation 74.22 86.50 62.03 1.73 42.90 40.39 37.50 24.69 43.88 16.08
⌥ PRIME [37] augmentation 76.91 87.12 64.34 2.16 55.27 49.00 42.20 29.83 46.62 30.82

PixMix (180ep) [25] augmentation 78.09 88.65 65.89 6.25 52.99 59.51 40.31 29.21 40.25 23.02
PixMix (90ep) [25] augmentation 77.36 89.88 65.20 4.11 51.87 57.76 39.92 28.57 45.00 22.28
Shape Bias Augmentation [31] augmentation 76.21 87.42 64.20 3.03 47.60 44.46 40.64 27.92 64.50 25.18
Texture Bias Augmentation [31] augmentation 75.27 86.81 63.18 2.25 41.82 40.26 36.76 24.28 35.50 16.83
Texture/Shape Debiased Augmentation [31] augmentation 76.89 86.20 65.04 3.39 48.28 45.47 40.77 28.42 56.00 25.99
DINO V1 [6] contrastive 75.28 85.28 62.70 5.15 39.61 35.88 30.17 18.75 30.63 13.26
MoCo V3 (1000ep) [8] contrastive 74.60 87.42 62.01 4.07 43.53 40.76 37.05 25.51 35.50 27.79
MoCo V3 (100ep) [8] contrastive 68.91 82.52 56.28 2.43 37.75 36.62 31.71 20.48 36.75 24.61
MoCo V3 (300ep) [8] contrastive 72.80 84.97 60.74 3.27 41.97 39.00 35.41 24.00 36.75 27.57

• SimCLRv2 [7] contrastive 74.90 85.58 61.24 4.65 44.32 40.73 35.16 23.55 43.88 14.57
 SwAV [5] contrastive 75.31 87.73 62.15 5.49 41.48 37.63 30.24 18.94 30.38 14.75
• Frozen Random Filters [14] freezing 74.76 87.12 62.47 2.52 45.22 40.98 37.52 25.36 40.62 16.18

ShapeNet: SIN Training [17] stylized 60.18 73.31 48.61 2.39 39.76 36.76 40.17 30.09 90.88 12.33
• ShapeNet: SIN+IN Training [17] stylized 74.59 87.12 62.43 1.91 46.91 43.33 41.55 29.70 91.00 22.47
 ShapeNet: SIN+IN Training + FT [17] stylized 76.72 88.34 64.65 2.23 43.55 41.86 38.93 26.92 45.00 21.23

timm (A1) [64, 65] training recipes 80.10 88.65 68.73 11.03 50.93 49.01 40.60 29.22 36.88 27.74
 timm (A1H) [64, 65] training recipes 80.10 89.26 68.47 15.21 49.36 48.57 40.99 29.64 39.00 36.11

timm (A2) [64, 65] training recipes 79.80 86.20 67.29 7.36 48.98 47.83 38.39 27.27 38.38 27.03
• timm (A3) [64, 65] training recipes 77.55 86.81 65.04 6.35 41.03 43.20 35.93 24.61 34.75 23.32

timm (B1K) [64, 65] training recipes 79.16 88.34 67.41 8.51 51.64 50.30 43.04 31.22 42.88 33.40
timm (B2K) [64, 65] training recipes 79.27 87.42 67.79 8.64 52.25 50.05 42.44 30.40 40.75 32.82

⌥ timm (C1) [64, 65] training recipes 79.76 89.88 68.54 10.07 50.60 49.40 41.54 30.29 37.12 33.72
timm (C2) [64, 65] training recipes 79.92 90.49 68.80 11.49 51.62 50.92 40.73 29.85 37.12 30.38
timm (D) [64, 65] training recipes 79.89 89.26 68.73 9.76 51.26 49.53 40.61 29.85 36.00 29.62

N torchvision (V2) [41, 59] training recipes 80.34 90.18 69.57 16.73 50.02 49.67 41.62 28.44 38.38 39.90



Table 2. Bias measurements of ResNet-50 models. Columns with gray background were not directly used in the main paper.

Bias
Critical Band

Shape Spectral (IN-1k non-normalized) (IN-1k normalized)
Model Category Bias Low-Freq. High-Freq. C-BW C-CF C-PNS C-BW C-CF C-PNS

• Original Baseline [19] baseline 0.21 0.63 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
 PGD-AT (`2, ✏=0) [35, 47] adversarial training 0.21 0.62 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
 PGD-AT (`2, ✏=0.01) [35, 47] adversarial training 0.22 0.64 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
 PGD-AT (`2, ✏=0.03) [35, 47] adversarial training 0.24 0.67 0.00 11295.35 3681.95 1.0 5.67 54.68 1.00
 PGD-AT (`2, ✏=0.05) [35, 47] adversarial training 0.24 0.67 0.00 11295.35 3681.95 1.0 5.91 41.85 1.00
 PGD-AT (`2, ✏=0.1) [35, 47] adversarial training 0.28 0.69 0.00 11295.35 3681.95 1.0 6.45 40.65 1.00
 PGD-AT (`2, ✏=0.25) [35, 47] adversarial training 0.34 0.72 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
 PGD-AT (`2, ✏=0.5) [35, 47] adversarial training 0.41 0.73 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
 PGD-AT (`2, ✏=1) [35, 47] adversarial training 0.48 0.75 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
 PGD-AT (`2, ✏=3) [35, 47] adversarial training 0.65 0.76 0.00 11295.35 3681.95 1.0 7.47 32.63 0.60
 PGD-AT (`2, ✏=5) [35, 47] adversarial training 0.69 0.78 0.00 11295.35 3681.95 1.0 7.92 45.71 0.55

PGD-AT (`1, ✏=0.5) [35, 47] adversarial training 0.37 0.73 0.00 11295.35 3681.95 1.0 7.86 58.20 1.00
PGD-AT (`1, ✏=1.0) [35, 47] adversarial training 0.45 0.74 0.00 11295.35 3681.95 1.0 7.37 39.19 0.73
PGD-AT (`1, ✏=2.0) [35, 47] adversarial training 0.54 0.75 0.00 11295.35 3681.95 1.0 7.92 45.71 0.55
PGD-AT (`1, ✏=4.0) [35, 47] adversarial training 0.62 0.75 0.00 11295.35 3681.95 1.0 10.46 114.50 0.52
PGD-AT (`1, ✏=8.0) [35, 47] adversarial training 0.72 0.78 0.00 11295.35 3681.95 1.0 7.47 32.63 0.60

N AugMix (180ep) [22] augmentation 0.30 0.74 0.02 9.95 34.70 1.0 4.74 38.85 1.00
DeepAugment [23] augmentation 0.39 0.77 0.06 11295.35 3681.95 1.0 5.51 56.31 0.72
DeepAugment+AugMix [23] augmentation 0.52 0.84 0.09 9.95 34.70 1.0 4.67 38.28 0.63

• Noise Training (clean eval) [29] augmentation 0.51 0.79 0.01 11295.35 3681.95 1.0 6.35 33.58 0.93
NoisyMix [12] augmentation 0.32 0.75 0.01 9.95 34.70 1.0 4.74 38.85 1.00

 OpticsAugment [38] augmentation 0.24 0.63 0.01 11295.35 3681.95 1.0 4.45 61.21 1.00
⌥ PRIME [37] augmentation 0.32 0.71 0.13 7.34 42.82 1.0 4.74 38.85 1.00

PixMix (180ep) [25] augmentation 0.26 0.68 0.03 5.91 41.85 1.0 4.74 38.85 1.00
PixMix (90ep) [25] augmentation 0.23 0.67 0.03 6.45 40.65 1.0 4.74 38.85 1.00
Shape Bias Augmentation [31] augmentation 0.28 0.66 0.01 11295.35 3681.95 1.0 4.74 38.85 1.00
Texture Bias Augmentation [31] augmentation 0.20 0.64 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
Texture/Shape Debiased Augmentation [31] augmentation 0.26 0.67 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00
DINO V1 [6] contrastive 0.18 0.44 0.01 7.34 42.82 1.0 4.74 38.85 1.00
MoCo V3 (1000ep) [8] contrastive 0.33 0.56 0.01 7.34 42.82 1.0 4.74 38.85 1.00
MoCo V3 (100ep) [8] contrastive 0.30 0.55 0.01 8.22 33.66 1.0 4.74 38.85 1.00
MoCo V3 (300ep) [8] contrastive 0.31 0.55 0.01 7.34 42.82 1.0 4.74 38.85 1.00

• SimCLRv2 [7] contrastive 0.23 0.55 0.01 11295.35 3681.95 1.0 4.74 38.85 1.00
 SwAV [5] contrastive 0.18 0.43 0.01 7.34 42.82 1.0 4.74 38.85 1.00
• Frozen Random Filters [14] freezing 0.31 0.68 0.01 11295.35 3681.95 1.0 4.74 38.85 1.00

ShapeNet: SIN Training [17] stylized 0.81 0.56 0.04 11295.35 3681.95 1.0 4.42 45.57 0.67
• ShapeNet: SIN+IN Training [17] stylized 0.35 0.63 0.01 11295.35 3681.95 1.0 4.33 39.67 1.00
 ShapeNet: SIN+IN Training + FT [17] stylized 0.20 0.64 0.01 11295.35 3681.95 1.0 5.67 54.68 1.00

timm (A1) [64, 65] training recipes 0.21 0.63 0.02 5.67 54.68 1.0 3.96 42.09 1.00
 timm (A1H) [64, 65] training recipes 0.17 0.61 0.02 5.67 54.68 1.0 3.71 46.56 1.00

timm (A2) [64, 65] training recipes 0.16 0.62 0.01 5.67 54.68 1.0 4.33 39.67 1.00
• timm (A3) [64, 65] training recipes 0.13 0.58 0.01 9.95 34.70 1.0 4.67 54.89 1.00

timm (B1K) [64, 65] training recipes 0.19 0.64 0.02 5.67 54.68 1.0 4.14 47.02 0.91
timm (B2K) [64, 65] training recipes 0.18 0.65 0.02 5.67 54.68 1.0 4.14 47.02 0.91

⌥ timm (C1) [64, 65] training recipes 0.18 0.64 0.02 5.67 54.68 1.0 3.96 42.09 1.00
timm (C2) [64, 65] training recipes 0.18 0.62 0.02 5.67 54.68 1.0 3.92 53.43 0.86
timm (D) [64, 65] training recipes 0.17 0.63 0.01 5.67 54.68 1.0 3.96 42.09 1.00

N torchvision (V2) [41, 59] training recipes 0.17 0.66 0.01 5.67 54.68 1.0 3.92 53.43 0.86



Figure 15. Performance comparison on all dataset pairs. Markers indicate models as described by the legend in Tab. 1.



(a) Original test on IN-16. (b) Original test on IN-16 with normalization.

(c) Critical band evaluation on IN-1k and IN-16 in comparison. We compare original (top) and normalized (bottom) evaluations.

Figure 16. Measurement of the critical band following the original methodology of Subramanian et al. [52]. (a) original test; (b) original
test with normalized accuracy; (c) Comparison between results in ImageNet (IN-1k) as in the main paper and the 16-super-class subset
(IN-16). Models with unreasonable measurements (C-BW � 100) were removed. Markers indicate models as described by the legend in
Tab. 1.
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