Appendix

A. Extended BEHAVIOR-1K Assets

Fig. 1 shows more examples of Extended BEHAVIOR-1K
Assets (main paper Sec.3.1): (a-f) examples for different
main categories. (g) examples of improved collision mesh
quality. (h) examples of articulation objects. (i) examples
of different light sources, (j) examples of fillable volumes
for containers.

B. Customizable Dataset Generator

We prepare a video in the supplementary material to show
an example visualization of the Customizable Dataset Gen-
erator: specifically, we show the scene instance augmenta-
tion by scene object (furniture) randomization and inserting
additional everyday objects.

C. Experiments
C.1. Parametric Model Evaluation

Details of Dataset Generation Process. We synthesized

the evaluation videos for each axis (Object articulation,

Lighting, Visibility, Zoom, Pitch) according to the follow-

ing pipeline.

As shown in the main paper Sec. 4.1, each video includes

a target object with changes focused on a single parameter
under examination. First, we sample one of the scene in-
stances and randomly choose a target object in the scene.
For the object articulation axis, we only sample objects with
movable parts, such as cabinets, microwaves, refrigerators,
etc. Next, we sample a random camera angle and distance
with the target object placed in the center. Then, for all ex-
cept pitch, we keep this camera pose and perform an axis-
specific manipulation to generate a video with the desired
variation:

* Object articulation: We linearly interpolate the joint an-
gle from being closed to fully open, utilizing the joint
maximum range annotations provided in BVS assets. We
record the image with the joint in each intermediate state.
For objects with multiple movable parts, e.g., a cabinet
with three drawers, we randomly sample a subset of joints
to manipulate and keep the rest closed.

» Lighting: We linearly increase the intensity of all indoor
light sources in the scene simultaneously.

* Visibility: There are three key components in the visibil-
ity (occlusion) setting: camera, target object, and occlud-
ing object. We first set the camera centering on the tar-
get object, then we place an occluding object (relatively
large object, e.g., cabinet) in the line between the camera
and the target object, fully occluding the target in view.
Then, we fix the distance between the camera and the tar-
get object and move the camera around the target object
until the target is fully visible. The visibility score (num-
ber of visible pixels/number of total pixels) of each frame
is calculated by rendering the video again and removing
the occluding cabinet. Although the object orientation in
camera view might slightly change since the camera is not
static, we implemented the following practices to elimi-
nate the effect of this factor. First, we set the camera rela-
tively far from the target but occluding objects close to the
camera, allowing minimal camera pose change needed to
capture the “fully occluded to fully visible” process. In
addition, the initial object pose is randomized, so when
we average evaluation performance, the effect of this fac-
tor shall largely cancel out.

* Zoom: With the camera pose fixed, we change its fo-
cal length to model the zooming effect. We strategically
changed the focal length such that the resulting video il-
lustrates an approximately linear zooming behavior. We
always make the target object at the center of the view,
and it remains mostly unaffected by distortion, even un-
der extreme focal length.

» Pitch: We linearly change the camera pitch angle while
keeping the original camera distance as well as the yaw
angle unmodified.

After each video was collected, we filtered out the videos

where the target object was not properly visible. The de-

tailed statistics for each axis is shown in main Table 2.

Metric Details. Each generated video contains exactly
one target object (main paper Figure 3 magenta). We use
different open-vocabulary object detection and segmenta-
tion models to detect or segment the target object. These
models act as indicators of performance in challenging en-
vironments, such as those with limited lighting or long-
distance zoom. Therefore, we compute the Average Pre-
cision (AP) metric using the target object as the sole ground
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truth, considering only predictions that classify the target
object class. However, it is plausible to encounter scenarios
where multiple objects of the same category as the target
object exist. For instance, in a video, there might be several
chairs, and the target object is one of those chairs. Mod-
els might have correctly detected all chairs, but since only
one is the ground truth, all rest will be marked as incorrect.
To counter such an undesired situation, we employ a simple
heuristic to filter predictions for the non-target object: For
non-target objects sharing the same category, we calculate
the IoU with each prediction and exclude those with an IoU
exceeding a predefined threshold of 0.3. This means treat-
ing these predictions as valid for non-target objects rather
than false positives. This threshold is chosen empirically
based on a few selected cases where objects of the same cat-
egory are densely packed together. We believe this choice
generalizes well to less crowded scenes and ensures the re-
liability of our evaluation process.

Failure Case Analysis on Five Evaluation Parameters.
In Fig. 2, we present failure case examples of Grounding
DINO [7] across five evaluation axes: Object articulation,
Lighting, Visibility, Zoom, and Pitch. Each row in our pre-
sentation represents one axis and comprises four example
groups. In each group, there are two images: the left im-
age illustrates the ground truth, highlighting the target ob-
ject in magenta, while the right image shows the Grounding
DINO’s prediction for the target object, as indicated at the
top of the first image in each group. The example groups are
arranged such that, from left to right, the intensity along the
respective axis increases (e.g., progressing from zoomed in
to zoomed out), the intensity value (0-1) is shown on top
of each prediction. We find and highlight some interest-
ing findings for each parametric evaluation in Fig. 2 and
detailed below. For the full axis, we prepare a video in sup-
plementary to show qualitative examples about running dif-
ferent detection models on the same video.

e Articulation. The model may have limited exposure to

open states for articulation objects, which makes it less

likely to predict a microwave with its door open correctly.

Lighting. When the environment is dark, the model per-

formance is negatively affected. However, when the light-

ing exceeds a certain threshold, in this case 0.5, the model
becomes robust to increasing illumination.

Visibility. The model’s detection performance suffers

when most of the target object is occluded. Surprisingly,

a correct prediction can be made with only half of the ob-

ject visible.

e Zoom. When the model is zoomed out, nearby objects
become distorted, leading the model to identify irrelevant
objects as the target mistakenly. This suggests that the
model’s recognition may rely partly on contours rather
than solely on semantic information.

L]

» Pitch. We find that, generally, the model can achieve bet-
ter performance in a look-down angle compared to a look-
up angle.

Segmentation Results on Five Axes. Figure 3 of the
main paper shows the performance of open-vocabulary de-
tection models on five axes. In Fig. 3, we show the per-
formance of open-vocabulary segmentation models instead.
The average performance for each axes corresponds to one
angle in the radar plot (main Figure 4). Observations in
main section 3.1 also apply to segmentation tasks.

Real Experiment Setup and Results In order to evaluate
the sim2real transfer capability of parametric evaluation re-
sults, we curated a set of real images to perform the same
evaluation. In total, we manually collected 430 images of
15 to 22 objects from various categories. For each axis, we
took photo of each target object with 5 levels of the corre-
sponding distribution shift that matches the intensity level
0, 0.25, 0.5, 0.75, 1 in the synthetic data. For example,
when collecting data for a microwave object for the articula-
tion axis, we collect 5 images of the microwave being fully
closed, 25% open, half open, 75% open, and fully open. An
example object from the real dataset (and the comparison to
the most similar counterpart in simulation) is shown in . For
the zoom axis, due to the limited focal length range of our
real cameras, we only covered intensity levels O to 0.3.

We evaluated the SOTA detection methods with manu-
ally labeled bounding boxes. Fig. 4 shows that under differ-
ent types of distribution shift, the performance of the SOTA
methods varies on real data just as it varies in simulation.

C.2. Holistic Scene Understanding (main paper Sec.
4.2)

Details of Generation Process. To generate a scene
traversal video, we adhere to a standard process. Initially,
we sample a scene instance and subsequently define a cam-
era trajectory using the BVS toolkit. Following this, we
render the traversal video, incorporating all required labels.
This section will detail the specifics of the trajectory sam-
pling procedure. In general, we want the sampled video to
provide rich information (good coverage) about the scene,
which can be broken down into two aspects. Firstly, we aim
for the camera to physically cover the room. That means
the sampled camera positions should enable visiting most
open spaces in the scene, rather than just focusing on the
largest open space. This guides our design for camera posi-
tion sampling. Second, we want the actual video to capture
as many objects in the scene as possible while still being
realistic (i.e., facing the direction of movement while mov-
ing). This guides our design for camera orientation sam-
pling. Next, we will establish the detailed steps. We will
open-source all codes and generate a video dataset.
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(b) Lighting. When the environment is dark, the model performance is negatlvely affected. However, when the lighting exceeds a certain threshold, in this
case 0.5, the model becomes robust to increasing illumination.
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(d) Zoom. When the model is zoomed out, nearby objects become distorted, leading the model to identify irrelevant objects as the target mistakenly. This

suggests that the model’s recognition may rely partly on contours rather than solely on semantic information.
armchair .

(e) Pitch. We find that, generally, the model can achieve better performance in a look- down angle compared to a look-up angle.

Figure 2. Error analysis for Grounding DINO [7]. Similar trends are also observed in other detection models. Each row in our presentation
represents one axis and comprises four example groups. In each group, there are two images: the left image illustrates the ground truth,
highlighting the target object in magenta, while the right image shows the Grounding DINO’s predictions (colored differently) for the target
object, as indicated at the top of the first image in each group. The example groups are arranged such that, from left to right, the intensity
along the respective axis increases (e.g., progressing from zoomed in to zoomed out), and the intensity value (0-1) is shown on top of each
prediction.

» To sample camera positions within the trajectory, a basic is on ensuring the trajectory covers the main open spaces,

approach might involve randomly selecting traversable
points within the scene. However, this brings the issue
that points in larger rooms are more likely to be selected
compared to those in smaller rooms. Our objective is to
achieve a more uniform coverage across the entire scene,
avoiding overconcentration in larger open areas. Thus,
we used the farthest point sampling method to sample a
set of key points that sparsely span the scene. Our focus

without the necessity of navigating narrow spaces such as
the gap between a cabinet and a wall. To achieve this, we
perform the sampling on an eroded version of the traver-
sal map. This technique effectively highlights the larger
open areas in a scene while eliminating smaller gaps and
corners.

Now we have a set of candidate key points sampled in the
scene, but a view from many of them may provide simi-
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Figure 3. Similar to Figure 3 in the main (Section 4.1), we plot the Segmentation model results for each of the five axes. AP is calculated
using target object only.

lar information about the scene (for example, two nearby
points in the same room). We don’t need to visit both
of them in the same trajectory. To ensure efficiency and
avoid redundancy, we need to select a subset of these
key points while still preserving a comprehensive view
of the scene (such as not excluding all points from a spe-

cific room). Our selection process begins by assessing the
unique information each key point provides, specifically
the objects visible from that point. We place a virtual
camera at each key point and rotate it 360 degrees, record-
ing the angle at which the maximum number of objects in
the scene are visible. We note both the visible objects and
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Figure 4. We also observe a comparable pattern in the parametric evaluation conducted on real data as observed in synthetic data (main

Figure 3).

their corresponding angles for each key point. Next, we
randomize the order of the key points and go over each
point sequentially to select the points that offer additional
information. If a key point reveals an object not visible
from all previously selected points, we retain it. Other-
wise, we discard it. This method results in a smaller, more
efficient subset of key points — referred to as waypoints
in the subsequent step — which still allows a comprehen-
sive observation of most objects in the scene.

* Once we have determined the set of waypoints, our next
step is to devise a trajectory that connects them in the
shortest possible path. To achieve this, we frame the task
as a traveling salesman problem, treating the waypoints
as nodes to be visited on the scene traversal graph. In this
step, to ensure the camera maintains a safe distance from
walls and furniture, we slightly erode the scene traversal
graph. This adjustment prevents the camera from getting
too close to these obstacles, ensuring smoother navigation
through the scene.

» After establishing the sequence of positions in the previ-
ous step, we focus on determining the camera’s orienta-
tion at each position. Our goal is to mimic the behavior
of a real agent exploring the scene. Therefore, while in
motion, the camera faces the direction it is moving to-
wards. Additionally, at each waypoint, the camera makes
a stop’ and turns to an optimal angle. This angle, pre-
determined in an earlier step, allows the camera to cap-
ture the most objects from that viewpoint. This approach
serves two purposes: firstly, to ensure that the trajectory
includes keyframes or angles for optimal object visibility,
and secondly, to simulate the natural behavior of an agent
pausing to observe the surroundings.

C.3. Object States and Relations Prediction (main
paper Sec. 4.3)

Details of Generation Process. For binary object rela-
tionship prediction, we synthesized 12.5k images, each an-
notated with one or more of the following five labels: open,
close, ontop, inside, under. For instance, an image
might depict a toy inside an open cabinet, thus making both
“inside” and “open” labels applicable.

The image sampling process is as follows: Firstly, we
select a scene and a piece of furniture to serve as the pri-
mary object in the relation (e.g., a table for placing items

on top). Subsequently, we determine a plausible relation-
ship related to this base object, with annotations provided
via BVS. For example, an item might be positioned ont op
or under a table, but not inside it. Following this, we
select a random object to place in the scene. This object is
then integrated into the scene, employing the physical state
sampling function from BVS to ensure its placement aligns
with the predetermined relationship. For instance, we might
sample a cupcake and place it at a random location on top
of the table. Lastly, we sample a random camera pose, en-
suring the placed object is centered in the frame. We then
filter out any instances where the objects of interest are not
adequately visible. This procedure is repeated iteratively to
compile our final dataset.

For unary object state prediction, we generated 500 im-
ages that either consist of a filled or empty (not filled)
container, similarly 500 images for folded. The sampling
process for unary states is simpler — we randomly sample
a scene, then place a random container/cloth object in the
scene, by 50% chance sample a filled or folded state for the
target object, then also sample a random camera pose with
the target object in the center.

Details of Architecture Design and Hyperparameters.
Our model architecture is adapted from [5, 8]. Given an
image input with two (or one) bounding boxes, the model
predicts the binary spatial (or unary) relationship between
objects corresponding to boxes (Fig. 5). First, the model uti-
lizes a Segment Anything image encoder [6] to extract hid-
den features. Subsequently, RolAlign [4] is applied to the
extracted features using the two (or one) bounding boxes. In
the binary case, where the objective is to predict the spatial
relationship between the two objects, RolAlign effectively
captures spatial information from the representation
Additional features are incorporated into the aligned rep-
resentations to enhance semantic information. Unlike [8],
which relies on word2vec vectors [9] and category names
for the objects (which may not always be readily available
in the world), we opt to use the Segment Anything extracted
feature, from the cropped image encompassing the union of
the two bounding boxes, as the additional feature. This ap-
proach preserves both spatial and semantic information.
The concatenated features are then fed into a trainable
CNN to predict seven-way logits. To prevent overfitting, we
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Figure 5. Relationship prediction model architecture used in Sec 3.3.

freeze the Segment Anything image encoder, ensuring that
the only learnable parameters are those of the randomly ini-
tialized CNN. Under a 0.3 learning rate with linear schedul-
ing, the model is trained on 13.5k synthetic images only but
can achieve strong performance in the real test set (Table 4
in the main paper).

Lastly, we discuss the details of zero-shot CLIP [10]
baseline, which is used to mimic scenarios where synthetic
datasets are not accessible. In this scenario, we have to rely
on CLIP’s zero-shot capacity. Specifically, akin to our ar-
chitecture, the image is cropped to maximize the semantic
information. Then the image embedding of the cropped im-
ages is compared with the label text embeddings from all
verbalized prompts. A verbalized prompt can take the form
of <A> on top of <B> where <A> and <B> are the
placeholder for the actual object category name. Empiri-
cally we find including the category name in the prompt
outperforms using predicate only (e.g., only on top of).
We emphasize that having prior knowledge of category
names in advance renders this task more straightforward
and less fair to our approach where we have no assumption
on access to any category name.

Shown in main Tables 4 and 5, BVS is capable of gener-
ating high-quality synthetic training data by demand [2, 3].
Models trained on such synthetic training data are able to
capture the essence of predicate prediction and bridge the
sim-to-real gap.

Folded and Filled Prediction BVS also supports nu-
anced unary object predicate such as folded and
filled. Models training on synthesized photo-realistic
images can transfer well to real images. We train two linear
probes on top of the EVAO2 [1] encoded representation to
predict folded and £illed, respectively. We manually
collect 50 real test images for each of the two predicates
and observe that linear probes can achieve 86% and 93%
real test accuracy for folded and £i1lled, respectively.

D. Demo Videos

We have provided video-demo.zip,  which
consists of demo videos of our generated
videos and model prediction. Specifically,

BVS-highlight .mp4 shows all visualization con-
tent. customizable-dataset—-generator.mp4
shows scene instance augmentation.
predicate prediction.mp4 consists of predicate
prediction model prediction on our collected real videos
(main Sec. 4.3). compare-detection-{axis}.mp4
consists of three detection model predictions on five
parametric evaluation axes (main Sec. 4.1).
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