1. Experiment Details

In this section, we discuss the additional details of the
datasets, video generation models, and other experiment
setups. We will release our code to compute FVD with
VideoMAE-v2 backbone features and pre-computed features
for commonly used video datasets.

Dataset. We conduct our analysis on six datasets, in-
cluding two widely used video understanding benchmarks
Kinetics-400 [2] and Something-Something-v2 [5], three
video generation benchmarks FaceForencis [8], Sky Time-
lapse [15], and Taichi-HD [9], and the UCF-101 dataset [11]
that has been used for both tasks.

Kinetics-400 [2] (K400) contains 267, 000 videos of 10
seconds in 400 action classes. Something-Something-v2 [5]
(SSv2) consists of 220,000 videos of 2 — 6 seconds in
174 classes of humans performing basic actions with ev-
eryday objects. UCF-101 [11] has 13,320 videos of, on
average, 7 seconds in 101 classes of human actions. Sky
Time-lapse [15] (Sky) collects 2, 647 time-lapse videos of
the sky in different periods and under various weather condi-
tions. FaceForencis [8] (FFS) contains 1, 000 human talking
videos collected from YouTube to facilitate Deepfake detec-
tion. We follow the official instructions to process the videos
to extract the face region and obtain 704 videos. Taichi-
HD [9] (Taichi) is a video dataset of 280 long YouTube
videos recording a person performing Taichi, which is pre-
processed into 3, 335 short clips. Note that video generation
models [4, 17] trained on this dataset often sample every
four frames to attain larger motion in each training clip.

Video Generation Models. Our generated videos are from
four video generation models, DIGAN [17], TATS [4],
StyleGAN-v [10], and PVDM [18]. DIGAN [17] is a
GAN-based model that leverages implicit neural represen-
tations and computation-efficient discriminators. TATS [4]
extends VQGAN [3] for long video generation by design-
ing time-agnostic VAE and hierarchical transformer. DI-
GAN and TATS-base models are trained on 16 video frames
of 128 x 128 resolution. StyleGAN-v [10] extends the
renowned StyleGAN architecture [7] for video generation
by employing implicit neural representations. PVDM [18]
exploits a latent diffusion architecture and efficient triplane
representation. StyleGAN-v and PVDM are evaluated with
resolution 256 x 256 and video length 16 and 128. When
computing FVD scores, all four methods generate 2, 048
videos. We follow StyleGAN-v [10] to save the generated
videos without severe JPEG compression and sample random
clips from the real videos. We can reproduce the reported
FVD scores, as shown in Table. 2 in the main paper.

Additional Implementation Deatils. To quantify the FVD
temporal sensitivity with video distortion methods, we fol-
low the common practice [12, 16, 17] to sample 2, 048 clips
of resolution 128 x 128 from each video dataset. We apply
the distortion in five pre-defined corruption levels following
the previous study [6]. To probe the perceptual null space in
FVD, we cast the extracted features and weights to float64
to stabilize the optimization process and avoid numerical
issues.

In addition, to compute ViT encoder features of Video-
MAE [13, 14] and TimeSFormer [1] models, we follow
the convention to exploit the pre-logit features. To extract
features from the pre-trained VideoMAE encoder-decoder
architecture, we take the output of the penultimate layer in
the encoder and average across all the patches, which uses
essentially the output from the same layer as the fine-tuned
VideoMAE model. To reduce memory costs when comput-
ing FVD, 95 using VideoMAE-v2 models, we cast all the
features to floatl6, as the FVD score difference between
using float16 and float32 is neglectable and often less than
0.03%.

All of our experiments are performed on a single NVIDIA
RTX A6000 GPU except for reproducing the StyleGAN-v
variants, where we follow the official receipt to train on four
NVIDIA RTX A6000 GPUs.

2. Addition Results

Quantifying the temporal sensitivity of FVD. We expand
Table 1 in the main paper to include the FVD scores on the
six datasets with either spatial (S) or spatiotemporal (ST) dis-
tortion using features from the I3D model, three VideoMAE-
v2 variants, two TimeSformer models, and VideoMAE-v2
models in Tables 1 and 2. By inspecting the spatial FVDs
computed with VideoMAE-v2 features on different datasets,
we notice that they vary less than the FVD scores using the
13D features, highlighting their generalization capacity. We
also explore the TimeSformer model trained on the SSv2
dataset. Compared with the one trained on the K400 dataset
reported in the main paper, it is generally more sensitive
to temporal quality change due to the dataset. However, it
is still on par with the I3D model as both share the same
supervised objective.

Probing the perceptual null space in FVD. We expand
Table 7 in the main paper to include FVD and FVD" on all
the models and dataset computed with the I3D model and
three VideoMAE-v2 variants in Table 3.

Practical examples. We expand Table 4 in the main pa-
per by showing the FVD changes on all the consecutive
16 frames of the extrapolated generation results using DI-
GAN in Figure 1. We notice that with longer frames being



Table 1. Results of analyzing the temporal sensitivity of FVD. We report FVDs of synthetic videos created from real videos using spatial
only or spatiotemporal distortions, where the two sets produce similar frame quality as assessed by FID and only differ in temporal quality.
This table includes the results of the I3D model and three VideoMAE-v2 variants.

Dataset DIStortlon Type FID FVDI}D FVDVideOMAE-VZ-K'/lO FVDVideoMAE-vZ-SSVZ FVDVideoMAE-vZ-PT
Motion Blur S 133.15 1460.18 121.37 277.10 18.33
UCF-101 ST  133.69(+0.4%) 1705.27(+16.8%) 147.91(+21.9%) 868.31(+213.4%) 39.21(+113.8%)
Elastic 175.47 979.48 167.21 221.83 7.95
ST 176.46(+0.6%) 1694.95(+73.0%) 321.96(+92.5%) 1186.91(+435.0%) 58.89(+640.6%)
Motion Blur S 79.11 211.08 88.80 127.99 14.22
Sky ST  79.35(+0.3%) 286.39(+35.7%) 252.01(+183.8%) 733.41(+473.0%) 35.73(+151.2%)
Elastic S 72.32 149.23 105.04 142.49 6.97
ST 72.52(+0.3%) 333.48(+123.5%) 438.19(+317.2%) 1056.40(+641.4%) 60.60(+769.0%)
Motion Blur S 80.42 354.49 95.73 199.90 13.61
FES ST 79.57(-1.1%) 367.35(+3.6%)  178.96(+87.0%) 717.08(+258.7%) 23.75(+74.4%)
Elastic S 161.55 589.07 192.01 164.82 11.14
ST 161.30(-0.2%) 891.50(+51.3%) 442.62(+130.5%) 969.28(+488.1%) 54.42(+388.4%)
Motion Blur S 169.76 1016.78 100.83 382.37 25.22
TaiChi ST 170.10(+0.2%) 1201.35(+18.2%) 177.51(+76.0%) 1217.34(+218.4%) 47.73(+89.3%)
Elastic S 182.99 688.55 100.93 161.51 5.81
ST  183.21(+0.1%) 1252.72(+81.9%) 372.14(+268.7%) 1467.06(+808.3%) 66.34(+1042.6%)
Motion Blur S 100.65 594.68 89.31 144.95 16.96
SSv2 ST  100.62(-0.0%) 678.08(+14.0%) 135.98(+52.3%) 502.09(+246.4%) 29.93(+76.5%)
Elastic S 143.16 622.87 216.12 211.98 9.74
ST 143.91(+0.5%) 980.44(+57.4%) 351.48(+62.6%) 746.91(+252.4%) 48.07(+393.7%)
Motion Blur S 112.22 996.71 92.11 257.01 17.67
K400 ST  112.85(+0.6%) 1155.53(+15.9%) 126.96(+37.8%) 785.58(+205.7%) 34.34(+94.3%)
Elastic 146.70 675.53 151.50 241.15 8.61
ST 146.68(—0.0%) 1189.37(+76.1%) 300.02(+98.0%) 1087.20(+350.8%) 55.01(+539.0%)
=030 providing a larger value. However, FVD scores computed
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Figure 1. DIGAN [17] trained on the Sky Time-lapse dataset
generates periodic artifacts when using extrapolated time steps. We
show the percentage change of FVD computed on every 16 frames
compared with the first 16 frames.

generated, the motion artifacts become more pronounced.

As a consequence, FVD scores computed with VideoMAE
features properly capture the reduced temporal quality by

with the I3D backbone are consistently less than from frames
0-16.
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Table 2. Results of analyzing the temporal sensitivity of FVD. We report FVDs of synthetic videos created from real videos using spatial
only or spatiotemporal distortions, where the two sets produce similar frame quality as assessed by FID and only differ in temporal quality.
This table includes the results of the I3D model, two TimeSformer variants, and VideoMAE-v1 model.

Dataset ~ Distortion ~ Type FVDnp FVDrimesfomer-k400 FVDTimesfomer-ssv2 FVYDvideoMAE-v1-k400
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Table 3. Results of probing the perceptual null space of FVD. We report FVDs of normal and frozen generated videos by random sampling
(FVD) and sampling to match all the fringe features (FVD"). We color the FVD difference for better visualization:
and > 60%. The drop of FVD on the frozen generated videos indicates the volume of the null space where FVD can be reduced without
generating a meaningful motion. I3D has the largest perceptual null space.

s

Feature Extractor 13D VideoMAE-v2-K710 VideoMAE-v2-SSv2 VideoMAE-v2-PT

Model Dataset FVD FVD" FVD FVD" FVD FVD" FVD FVD"
Normal Generated Videos vs. Real Videos
DIGAN UCF-101 | 562.36 220.89(-60.7%) | 358.80 160.13(-55.4%) | 378.19 260.77( Y| 277 2.67¢( )
DIGAN Sky 157.13  54.39(-65.4%) | 86.58 61.93( y | 174.79  128.00( y| 472 3.71¢( )
DIGAN Taichi 132.26  65.72(-50.3%) | 58.72 24.45(-58.4%) | 313.84 194.17( )| 4.00  3.66( )
TATS UCF-101| 329.92 120.58(-63.5%) | 176.98 72.95(-58.8%) | 388.79 226.39(—41.8%)| 7.92 7.12( )
TATS Sky 125.62 38.42(-69.4%) [100.27 59.83(-40.3%) | 213.33 105.69(—50.5%) | 18.11 7.87(—56.5%)
TATS Taichi 124.16  64.17(-48.3%) | 37.16 26.08( y | 274.81 126.53(—54.0%) | 5.88  5.34( )
StyleGAN-V Sky 56.63  31.73(—44.0%) | 180.97 55.54(—69.3%) | 219.85 148.11¢ )110.04  8.78( )
StyleGAN-V FFS 56.22  25.87(-54.0%) | 77.28 61.02( y | 194.68 135.30( y| 1.08  1.04( )
PVDM UCF-101| 348.81 113.99(—67.3%)|116.01 90.40( y | 369.14 172.35(-53.3%) | 4.51  3.69( )
PVDM Sky 59.95 22.94(-61.7%) | 141.48 75.12(—46.9%) | 142.50 57.04(—60.0%) | 3.63 2.33( )
Frozen Generated Videos vs. Real Videos

DIGAN UCF-101 | 1303.13 715.96(—45.1%) | 357.61 175.13(—51.0%)| 951.59 859.57( ) 112,61 12.23¢ )
DIGAN Sky 230.64 115.55(—49.9%) | 175.47 142.86( )| 408.17 362.84( y[13.23 12.16¢ )
DIGAN Taichi 461.79 276.88(—40.0%)|132.96 52.00(—60.9%) | 578.61 523.20( )| 440  4.18¢ )
TATS UCF-101 [ 1157.69 616.25(—46.8%) | 247.80 107.41(-56.7%) | 908.95 805.88( )| 14.66  13.68¢( )
TATS Sky 279.75 126.32(—54.8%) | 172.00 140.37( y| 375.74  353.15¢ ) |21.28 15.76¢( )
TATS Taichi 47599 312.19( )| 164.58 64.69(—60.7%) | 587.31 530.86¢( ) | 4.63 4.4 )
StyleGAN-V Sky 206.56 104.27(—49.5%) |224.80 91.71(—59.2%) | 503.22 456.24( ) 123.17 21.60( )
StyleGAN-V FFS 353.79 242.04( y| 171.38 147.76( )| 547.24  520.98¢( ) | 14.08 14.22( )
PVDM UCF-101 | 1135.61 605.09(—46.7%) | 250.52 211.34 )| 1032.90 898.48( y[112.95 12.34¢( )
PVDM Sky 182.77 94.87(—48.1%) |198.50 140.77( )| 429.06 395.79( y | 11.54 11.03¢ )
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