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6. Implementation details of using DFS algo-

rithm to find the optimal GoP structure for

Bpp-mAP metric

Different videos have different contents, and some of the
contents are related to downstream machine vision tasks,
including the size and quantity of objects, intensity of ob-
ject movement, camera movement, etc. Considering these
factors related to coding and downstream tasks, when trad-
ing off between the coding bitrate and downstream task per-
formance, different videos must correspond to different op-
timal GoP structures. To explore the “optimal GoP struc-
tures” and the upper bound of GoP structures using P and
Pm frames, as shown in algorithm 1, we use a DFS algo-
rithm to iterate over every possible structure for every GoP,
which has a size of 10. In every GoP, we use the target
function R + �Ldet and find the GoP structure that leads
to the minimum value of the target function. As shown in
Fig. 5, the result of DFS shows a much better trade-off for
the Bpp-mAP metric than the hand-craft “DivGoP” struc-
ture. However, the time complexity of DFS is extremely
high. For GoP size 10, there are 9 predicted frames, which
means that the algorithm will visit 29 = 512 nodes, and
512 times of encoding and decoding will be performed in
each GoP. This obviously cannot be really applied. At the
same time, the result of DFS does show that there is a huge
gap between the hand-craft “DivGoP” structure and optimal
GoP structure. Therefore, how to use the inter-frame rela-
tionship, motion relationship and other information of the
videos to dynamically determine the GoP structures more
accurately within acceptable time complexity is a worth ex-
ploring question for us.

7. Comparing with other one-to-one VCM

methods

In this section, we compare our method with existing one-
to-one VCM methods in multi-object tracking and video ob-
ject detection tasks.

For multi-object tracking task, we compare our method
with SMC [38], which is a “one-to-one” VCM method.
SMC contains two layers of encoders and decoders. The
base layer is VVC and the semantic layer is designed to en-
hance the performance for downstream vision tasks. We re-
quested the original authors of SMC to obtain the code and
rigorously compared with it in our experimental settings.
The results are shown in Fig. 10(a)(b)(c)(d). We compare
our method with SMC in the metrics of MOTA, MOTP,
IDF1 and FN. It is observed that out methods outperform

Algorithm 1 Using DFS to search for the optimal GoP
structure on MOT

1: function FINDTARGET-
PATH(depth, path,min path, bpps, det losses, Pm)

2: if depth > max depth then

3: return

4: end if

5: if Pm == True then

6: bpp, det loss codec.forward Pm

7: path.append(0)
8: bpps.append(bpp)
9: det losses.append(det loss)

10: else

11: bpp, det loss codec.forward P
12: path.append(0)
13: bpps.append(bpp)
14: det losses.append(det loss)
15: . Update Reference frame
16: end if

17: if depth == max depth then

18: target target function(bpps, det losses)
19: if target < min target then

20: min path current path
21: min target target
22: end if

23: end if

24: FINDTARGETPATH(depth+ 1, ..., Pm = True)
25: FINDTARGETPATH(depth+ 1, ..., Pm = False)
26: end function

SMC at bitrate range from around 0.04 to around 0.14. Our
controlled TCM and controlled FVC still show the best and
second-best performance.

We also compare our method with DeepSVC [23].
DeepSVC contains three layers of encoders and decoders,
which are semantic layer, structure layer and texture layer.
The semantic layer serves downstream vision tasks, while
structure and texture are used for the reconstruction task.

As for the video object detection task, we follow the
experimental setting of DeepSVC, using the same detec-
tor TROIAlign [13] whose pre-trained weights are provided
by mmtracking [6]. Specifically, we follow the data pro-
cessing procedure of DeepSVC and compress the video
frames using our method, then we feed the decoded frames
to TROIAlign and evaluate the video object detection per-
formance. The results are shown in Fig. 10(e). The
“Ours+TCM” method outperforms DeepSVC in this Bpp-
mAP metric. Compared with DeepSVC, our method has
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Figure 10. (a) Bpp-MOTA curves on MOT Dataset. (b) Bpp-MOTP curves on HEVC ClassB dataset. (c) Bpp-IDF1 curves on MOT
Dataset. (d) Bpp-FN curves on MOT Dataset. (e) Bpp-mAP curves on Imagenet VID dataset. (f) Bpp-PSNR curves on HEVC ClassB
dataset.

two main strengths, on the one hand, our method is built
on existing DVC codecs, making it both flexible and have
the potential to use stronger DVC codecs to further demon-
strate stronger performance. On the other hand, many video
analysis methods use reference frame sampling strategy to
enhance the video analysis performance. Some One-to-one
VCM methods, such as DeepSVC, use feature decoder to
support the video analysis task, making it difficult to still
support the reference frame sampling strategy. Meanwhile,
Our method is compatible with this strategy since we do not
change the decoding procedure and still generate decoded
video frames.

As for the video reconstruction task, we compare our
methods with DeepSVC on HEVC Class B dataset. The
result in Fig. 10(f) shows that our TCM still outperforms
DeepSVC in Bpp-PSNR metric.

Our codec shows clear advantages over recent VCM
methods such as SMC and DeepSVC: (1) Both SMC and
DeepSVC require multiple decoders for different tasks,
whereas our method necessitates only a single pre-trained
decoder to support multiple tasks, which is more feasible to
standardization and practical deployment. Once standard-
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Figure 11. Autoregressive DVMP module.

ized and deployed in SoC, the decoder remains unchanged,
allowing our codec to support new tasks without modifica-
tions. (2) As shown in Fig. 10, our method surpasses these
competitors in MOT and VOD tasks in performance.

8. Detail structure of autoregressive DVMP

module

As illustrated in Fig. 11, we provide the structure of autore-
gressive DVMP module. The hyperprior network then pre-



dicts the mean and variance for each element, resulting in
dimensions of 2c⇥h⇥w. And the autoregressive networks
predicts the contextual feature, which also has a shape of
2c ⇥ h ⇥ w. The autoregressive DVMP firstly obtain the
hyperprior information, undergoing one convolution layer
and three ResBlocks with kernel size of 3. Then the autore-
gressive convolution layer is used to handle the contextual
information. After that, the two parts of feautures are con-
catenated and undergo two convolution layers with kernel
size of 1. In this way, our DVMP can achieve the support
for mode prediction in DCVC. During training stage, we
employ the Gumbel Softmax technique to predict the mt.
And during inference stage, we use max optain to generate
the mt.

9. Discussion of extract and compress semantic

information instead of whole video.

The idea of extracting and compressing semantic informa-
tion to support downstream machine vision tasks is fea-
sible, as evidenced by several existing methods [4, 11].
Nonetheless, in complex downstream scenarios, relying
solely on compressed semantic information may be insuf-
ficient. Take autonomous driving as an example: multi-
modal data, such as video, LIDAR, and radar, are imper-
ative for precise decision-making. While semantic infor-
mation like object detection is crucial, the video modality
encompasses a broader context — including weather con-
ditions and road quality — which can profoundly impact
driving decisions. Furthermore, in practical applications,
retaining video modality for purposes like secondary human
inspection post-detection is often necessary. Therefore, our
study maintains a focus on the video modality.
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