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Supplementary Material

The contents of this supplementary material are as fol-

lows: Sec. A1 provides additional experimentation details,

including dataset statistics, network architecture specifica-

tions, and hardware implementation details. Sec. A2 con-

ducts further ablation studies and gives further analysis.

Sec. A3 presents additional qualitative results on both syn-

thetic and real data.

A1. Additional Experimentation Details

Dataset Statistics. The KAIST [10] synthetic dataset used

in our work consists of 12 sets with 41 clips, where the

first 6 sets with 25 clips are split as training data and the

rest as test data. Compared to other VIF datasets, KAIST

provides consecutive visible and infrared frames, making

it suitable for event data generation. After processing, we

obtain 6,738 training pairs of blurry/sharp images and cor-

responding events within the simulated exposure window of

each blurry frame. Additionally, from the 6,396 pairs in the

test set, we randomly select 1,000 pairs for evaluation. For

the real data, we capture 11 clips of infrared/visible frames

and corresponding event data on various different scenes.

Network Architecture. For the event-based visible tex-

ture reconstruction network and event-guided infrared im-

age deblurring networks, we use the official implementa-

tion of E2VID [39] and EFNet [42]. We perform cross-task

event enhancement between the multi-scale encoder fea-

tures of E2VID and the event encoder features of EFNet.

Both two features have three scales and we apply enhance-

ment on each scale separately. The output of ConvGRU has

the same channel number as its input feature. The 1 × 1
convolution layers in Fig. 3 of the main paper are used to

align the number of channels between the two features. For

the fusion task, we adopt the last decoder block feature of

E2VID and the SAM feature from EFNet as fusion input.

The transformer blocks in the fusion network have 8 heads

and the same input/output channel number. Given fused

features, we adopt four consecutive convolution layers as

the fusion decoder to recover the final fused image.

Hardware Implementation. The two cameras in our

hardware system are connected using a customized rig to

ensure horizontal alignment. The models of the two cam-

eras are DAVIS 346 for event camera and HIK MV-CI003-

GL-N15 for infrared camera. The lens focal length of

the event and infrared camera are 16mm and 15mm, re-

spectively, and the camera resolutions are 346 × 260 and

640× 512, respectively.

We align the two cameras by first manually selecting key

points from infrared frames and event-reconstructed visi-
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Figure A1. The temporal synchronization circuit between event

and infrared cameras. The switch in the IR camera is turned on by

default and turned off once start capturing. Therefore, the voltage

between the SIGNAL IN and GND of the event camera is nearly

0 by default, and goes up to +5V when IR Cam start capturing.

ble frames. Then we warp the infrared frame to the visi-

ble frame by calculating the wrapping matrix. It is widely

known that a homography warping matrix estimated from a

single frame can be difficult to generalize to other frames.

Additionally, the quality of night-time event-reconstructed

images may not always be sufficient to support effective

keypoint selection and frame-by-frame matching. To ad-

dress these challenges, we try our best to keep the object

distance and scene depth not varying too much when shoot-

ing a clip. In this way, a matrix computed for a frame can

be applied to its neighboring few frames, which reduces the

keypoint selection burden. When the keypoint of a particu-

lar frame and all its neighboring frames are too hard to be

selected, we simply discard them. Note that our hardware

is a experimental prototype that used to validate system de-

sign. In practice, advanced per-pixel alignment could be

achieved through special VIS-IR beam splitter, such as the

one implemented to capture the KAIST dataset [10]. Af-

ter spatial alignment, all images have a spatial resolution of

346× 260, and the events in each sample are recorded over

a period of 20 ms corresponding to the exposure time of the

infrared camera.

For temporal synchronization, we use a 5.0V voltage

power supply and a 1KΩ pull-up resistor to form a synchro-

nization circuit, as shown in Fig. A1. At the start of cap-

turing, the infrared camera sends a high logic-level signal

through the circuit and records its internal timestamp. At

the same time, the signal is received by the event camera,

which also records its internal timestamp upon receiving.

In this way, we build a correspondence between the internal

timestamps of both cameras and achieve synchronization.



Table A1. Ablation study results on the KAIST synthetic dataset.

The best results are indicated in bold, and the second best are in-

dicated with an underline.

Model Configuration EN↑ MI↑ SSIM↑ QCB↑
I w/o Cross Task Event Enhance 7.35 1.96 1.26 0.33

II Only shallow features as Fvis and Fir 6.62 1.49 1.21 0.30

III Only deep features as Fvis and Fir 7.29 1.97 1.28 0.36

IV w/o MI optimization 6.90 1.91 1.27 0.37

V MI maximization only 7.16 1.93 1.26 0.36

VI MI minimization only 6.58 1.55 1.24 0.32

EVIF (ours) 7.33 1.98 1.29 0.38

A2. Further Ablation Studies and Analysis

More Ablation Study Results. We conduct additional ab-

lation experiments with multiple model configurations to

verify the effectiveness of different components of EVIF

on the synthetic KAIST dataset. The results are given in

Table A1. The model configurations are as follows:

I. EVIF without using cross-task event enhancement

between the first two tasks.

II. Only shallow features are used as inputs Fvis and Fir

for the fusion task. As depicted in Fig. 2 in the main

paper, these shallow features are derived by process-

ing the output images from previous tasks through a

convolution layer.

III. Only deep features are used as inputs Fvis and Fir for

the fusion task. The deep features are extracted from

the decoder features of the previous task networks.

IV. EVIF without using mutual information optimization

in the fusion task.

V. EVIF with only mutual information maximization in

the fusion task.

VI. EVIF with only mutual information minimization in

the fusion task.

From the table, we can draw several conclusions: First, the

cross-task event enhancement method effectively improves

fusion results by enhancing the quality of deblurred infrared

images. Second, utilizing both shallow and cross-task deep

features for fusion proves more robust than using either type

alone. Meanwhile, cross-task deep features perform much

better than shallow features, highlighting the importance of

cross-task feature sharing in EVIF. Third, the bi-level MI

optimization strategy outperforms singular MI maximiza-

tion or minimization approaches. Notably, performing MI

minimization alone even decreases fusion performance due

to severe information loss. These ablation study results fur-

ther affirm the effectiveness of the design elements of EVIF.

Moreover, these results position our framework as a pio-

neering and representative example of design methodology

in this challenging new task.

Further Analysis on Cross-task Event Enhancement.

The cross-task event enhancement method utilizes several

key designs to effectively extract complementary texture in-

formation across tasks to facilitate infrared image deblur-

Table A2. Comparison of various design choices of the cross-task

event enhancement method.

Design Choice PSNR↑
I w/o Cross-task Event Enhance 33.32

II Bi-direction GRU → Convolution Layers 33.61

III Bi-direction GRU → Uni-direction GRU 33.79

IV Cross-task Channel Attention → Concat 33.55

V Cross-task Channel Attention → Add 33.57

VI Cross-task Channel Attention → Multiply 33.48

Cross-task Event Enhancement 33.94

ring, including bi-directional ConvGRU for texture feature

extraction and cross-task channel attention (CTCA) for fus-

ing cross-task features. To verify the effectiveness of these

designs, we compare the deblurring performance of several

alternative design choices on the KAIST dataset. As shown

in Table A2, bi-directional GRU performs better than con-

volution layers for texture feature extraction. This is due to

the continuous nature of event data, which demands tem-

poral relation modeling. On the other hand, bi-directional

temporal modeling also brings benefits compared to the uni-

directional one, as it can capture context from both past and

future data, thus gaining a more comprehensive understand-

ing of the sequence. Apart from these, the cross-task chan-

nel attention for feature selection performs significantly bet-

ter than directly concatenating, adding, or multiplying fea-

tures. This indicates the importance of data-dependent fea-

ture selection in cross-task feature sharing. Finally, bringing

all the designs together, our full method for cross-task event

enhancement achieves the best deblurring performance and

facilitates a higher fusion quality.

Further Analysis on bi-level MI optimization. As an-

alyzed in the main manuscript, the bi-level MI optimiza-

tion in EVIF can highlight the complementary information

residing in both visible and infrared modalities while re-

ducing information loss. To give a deeper understanding

of such an effect, we visualize the input modality features

Fvis, Fir and filtered features F ′

vis, F ′

ir after MI optimiza-

tion in Fig. A2. It is obvious that both F ′

vis, F ′

ir have high-

lighted particular areas that contain more information. For

the visible modality, F ′

vis further enhances texture-rich ar-

eas (e.g., car, building windows, zebra crossing). On the

other hand, we can see that compared with Fir, F ′

ir keeps

the most salient objects in the infrared modality while sup-

pressing background areas that are less informative. The

visualization results demonstrate that bi-level MI optimiza-

tion can successfully extract modality complementary in-

formation and provide a comprehensive description of the

scene, which echoes our analysis in the main paper.

Impact of the balancing weights of different loss terms.

The weights γ1, γ2 and γ3 in Eq. 6 of the main paper are

set to reach a balance between each loss terms, especially
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Figure A2. Visualization of visible and infrared modality features

before and after MI optimization.

Table A3. Fusion performance of different loss weights on the

KAIST synthetic dataset.

γ2 : γ3 EN↑ MI↑ SSIM↑ QCB↑
1:100 7.14 1.95 1.27 0.36

1:10 7.21 1.93 1.25 0.35

1:1 7.28 1.96 1.28 0.36

10:1 7.33 1.98 1.29 0.38

100:1 6.87 1.79 1.23 0.34

between the MI minimization and maximization. To study

the impact of these loss terms, we keep γ1, γ2 to 1.0, 0.1

and adjust the ratio between γ2, γ3 to test the fusion quality.

Table A3 gives the fusion results of different weight combi-

nations. From the table, we can see that when γ2 : γ3 is less

than 1:1, the performance slightly varies. The performance

is best when we increase the ratio to 10:1. However, when

keep increasing the ratio to 100:1, the performance starts to

drop rapidly, this is due to the overly strong MI minimiza-

tion, which tends to cause information loss.

Limitation of EVIF. While EVIF is a promising system

for fusing visible and infrared modalities, it does have limi-

tations due to the inherent sensing characteristics of event

cameras, which respond only to changes in light, not to

absolute pixel values. This limitation becomes evident in

situations with little or no motion, where the event cam-

era might fail to capture valid information. For instance, as

shown in Fig. A3, when a car is stationary at a red light, only

moving pedestrians are captured by the event camera, lead-

ing to a loss of static background information. This issue

highlights that EVIF and conventional VIF systems can be

cooperative rather than competitive, offering complemented

strengths to handle a wide range of conditions.

A3. More Qualitative Comparision Results

Synthetic Data. Figs. A4 and A5 provide additional qual-

itative results on the synthetic KAIST dataset. The dis-

played images are marked as follows: “GT IR” and “GT

VIS” are ground truth infrared and visible images, respec-

tively. “Blurry IR” and “Blurry VIS” are corresponding

simulated blurry infrared and visible images. “Events” de-

notes the event data. “EVIF Rec. VIS” and “EVIF De-

blurred IR” are the results of the event-based visible tex-

ture reconstruction and event-guided infrared image deblur-

ring tasks in EVIF. “EVIF Fusion (ours)” is the final fu-

sion result of EVIF. “NAFNet Deblurred IR” and “NAFNet

Deblurred VIS” are the frame-based deblurring results ob-

tained by processing “Blurry IR” and “Blurry VIS” with

two NAFNet models trained on KAIST infrared and visi-

ble data, respectively. The rest images are fusion results of

different methods. Fusion methods without ∗ directly ap-

ply “Blurry IR” and “Blurry VIS” as VIF input. Fusion

results with ∗ adopt “NAFNet Deblurred IR” and “NAFNet

Deblurred VIS” as VIF input. Compared to other meth-

ods, EVIF excels in recovering visible textures from events

and restoring thermal radiation details from blurry infrared

images, while conventional VIF methods suffer from blurry

effects even with NAFNet deburring as data pre-processing.

Real Data. In addition to the synthetic data, more qualita-

tive results on real-captured data are provided in Figs. A6

to A10. Since no ground truth exists, we only use “IR”

and “VIS” to denote the captured infrared and visible im-

ages. All comparative methods either directly take “IR” and

“VIS” as input, or pre-process them using NAFNet before

fusion (marked with ∗). The results show that EVIF offers

clearer scene descriptions under extreme lighting and rapid

motion, while conventional VIF methods tend to produce

inferior results due to reduced input data quality.

Despite the advantage of EVIF, the figures also reveal

that real scenes often exhibit blurriness and exposure issues

simultaneously. Such a complex degradation significantly

increases the difficulty for any pre-processing algorithm to

restore satisfactory inputs for conventional VIF methods.

Therefore, relying on input pre-processing to handle ex-

treme lighting and high-dynamic motion scenes remains an

arduous task. This is also evidenced by the lower effec-

tiveness of NAFNet on the real data. In contrast, EVIF di-

rectly uses high-quality event data, bypassing these chal-

lenges and offering a more direct approach to scene repre-

sentation. As a result, our method has the potential to pave

the way for future advancements in handling even more di-

verse and challenging scenarios.
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Figure A3. Illustration of EVIF’s limitation in a camera-fixed scenario. The image showcases a scene where the car carrying cameras

is stopped at a red light, with only moving pedestrians being captured by the event camera. This results in the loss of static background

visible information, demonstrating a complementary rather than competitive relationship between EVIF and conventional VIF systems.
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Figure A4. Qualitative comparison on KAIST synthetic data. Please refer to the blue text in Sec. A3 for the meaning of each image.
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Figure A5. Qualitative comparison on KAIST synthetic data. Please refer to the blue text in Sec. A3 for the meaning of each image.



VISIR EVIF Rec. VISEvents

EVIF Deblurred IR EVIF Fusion (ours) SwinFuse DenseFuse

YDTR U2Fusion DIDFuse LRRNet

CDDFuse HMSD_GF GFCE SwinFuse∗

DenseFuse∗ YDTR∗ U2Fusion∗ DIDFuse ∗

LRRNet∗ CDDFuse∗ HMSD_GF∗ GFCE∗
Figure A6. Qualitative comparison of EVIF on real-captured data. The detailed meanings of each image are similar to those in Fig. A4 and

A5. One exception is that real data has no ground truth, so we only use “IR” and “VIS” to denote the captured infrared and visible images.
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Figure A7. Qualitative comparison of EVIF on real-captured data. The detailed meanings of each image are similar to those in Fig. A4 and

A5. One exception is that real data has no ground truth, so we only use “IR” and “VIS” to denote the captured infrared and visible images.
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Figure A8. Qualitative comparison of EVIF on real-captured data. The detailed meanings of each image are similar to those in Fig. A4 and

A5. One exception is that real data has no ground truth, so we only use “IR” and “VIS” to denote the captured infrared and visible images.
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DenseFuse∗ YDTR∗ U2Fusion∗ DIDFuse ∗

LRRNet∗ CDDFuse∗ HMSD_GF∗ GFCE∗
Figure A9. Qualitative comparison of EVIF on real-captured data. The detailed meanings of each image are similar to those in Fig. A4 and

A5. One exception is that real data has no ground truth, so we only use “IR” and “VIS” to denote the captured infrared and visible images.
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DenseFuse∗ YDTR∗ U2Fusion∗ DIDFuse ∗

LRRNet∗ CDDFuse∗ HMSD_GF∗ GFCE∗
Figure A10. Qualitative comparison of EVIF on real-captured data. The detailed meanings of each image are similar to those in Fig. A4

and A5. One exception is that real data has no ground truth, so we only use “IR” and “VIS” to denote the captured infrared and visible

images.


