OrthCaps: An Orthogonal CapsNet with Sparse Attention Routing and Pruning

Supplementary Material

1. Symbols and abbreviation used in this paper

Symbol Description

OrthCaps Orthogonal Capsule Network

OrthCaps-S Shallow network variant of OrthCaps
OrthCaps-D Deep network variant of OrthCaps

x Input image

l Layer index

o0 Features from initial convolutional layer

i/ (Ur) Capsules/ (matrix) at layer [

vi+1,i/(Vig+1) Capsules/ (matrix) at layer [+ 1

n Capsule count in layer [

m Capsule count in layer { + 1

d Capsule dimension

w Feature map width

H Feature map height

B Batch size

Uflat Flattened capsules

Uprdered Capsules ordered by their La-norm

Upruned Pruned capsules

m; /(M) Mask column/matrix for pruned capsule layer
ti;/(T) Cosine similarities/ (matrix) for pruned capsule layer
0 Threshold for pruned capsule layer

Q,K,V Attention routing components: Query, Key, Value

Wq, Wi, Wy Weight matrices for Q, K, V

¢ii/(C) Coupling coefficients/ (matrix) for attention routing
Si41,5/(S1) Votes/ (matrix) for attention routing

w Weight matrix for simplified attention routing

g Activation function

H Householder matrix

a; Unit vector in Householder matrix formulation

b; Learnable vector in Householder matrix

2. experimental Setups

2.1. hyperparameters

Hyperparameter Value

Batchsize 512 (4 parallelled)
Learning rate Se-3
Weight decay Se-4
Optimizer AdamW
Scheduler CosineAnnealingL.R and 5-cycle linear warm-up
Epochs 300
Data augmentation ~RandomHorizonFlip, RandonClip with padding of 4
Dropout 0.25
mT 0.9
m~ 0.1
A 0.5
0 0.7
d 16
2.2. Setups

In this section, we describe the necessary Python library
and corresponding version for the experiments in the main

paper.

Library Version
pytorch 1.12.1
numpy 1.24.3
opencv-python 4.7.0.72
pandas 2.0.2
pillow 9.4.0
torchvision 0.13.1
matplotlib 3.7.1
icecream 2.1.3
seaborn 0.12.0

3. HouseHolder Orthogonalization
3.1. Proof of Lemma 1

Assumption:

W+1 = {Ul+1717vl+1727...,Ul+1)m} is a set of m
capsule vectors in layer [4+ 1 of the network. W is an
orthogonal matrix, i.e. WTW = I.

Proof:

we aim to prove that the cosine similarity ¢;; between
any two capsules v;11,; and vy ; remains constant after
multiplied by W. For an orthogonal matrix W, the dot
product and vector lengths are preserved. Let 0;11; =
Wuigt,4, Uir1,; = Wuigq,j denote the transformed vectors.
Thus, we have:

= (Worgr,)" (Worga)
= vlj_]_linTWvHLj (L

Ui41, - Dig1,5

_.T
= Vp41,iV+1,5

and

[D141,ill2 = \/(WUHM)T(WWH@)
T
= ﬁl+1,iWTWUz+1,i @)
T
= VU410 1,
= |lvig1.ill2

Thus, we obtain transformed cosine similarity fij in Eq. (3):

i — (1) (G4)
Y ol Ol
_ Uit Ui 3)

lvis1ill2llvig;ll2

Therefore, orthogonal transformations preserve the cosine
similarity between any two vectors.

3.2. Proof of Lemma 3

Proof:
Let W represent one of Wg, Wy , Wy as W can be
expressed as
W =HyH,...Hj_1 @

where H; = I — 2aiaiT. We have
WIW =HY .. H'HIHyH,...Hy (5)

We demonstrate that H; is orthogonal, i.e. HlT H, =1.
This is obvious, as
HI'H; = (I - 2a;a7)T (I - 2a;al)

=1 —4a;a] +4aal =1

(6)

Therefore, Equation (5) can be written as wTw =
I...I1=1.
——

d

3.3. Householder as a Regularization Technique

Filters Similarity Distribution

20%
—— OCNN

—— Householder
—— Baseline
15%1

10% -

Percentage

5%

0% T T T .
0.0 0.2 0.4 0.6 0.8 1.0

Similarity

Figure 1. The normalized histogram of pairwise filter similarities
in standard ResNet34 with different regularizers. HouseHolder or-
thogonalization method shows the best performance of descending
filter similarity.

We demonstrate Householder’s role as a regularization
technique for neural networks. For ResNetl8, we flatten
and concatenate convolutional kernels into a matrix W, and
orthogonalize it to minimize off-diagonal elements, which
reduces channel-wise filter similarity and redundancy. To
quantify these properties, we used Guided Backpropagation
to dynamically visualize the activations[38]. Compared to
directly computing the covariance matrix of convolutional
kernels, The gradient-based covariance matrix offers a more
comprehensive view of the dynamic behavior of filters. We
define the gradients from Guided Backpropagation as G and
compute its gradient correlation matrix corr(G) as:

N|=

(diag(Kac)) ? Koe (diag(Kee))™)

where Ko = 7 (G —E[G])(G —E[G])T), M is
the number of channels. Fig. | of the off-diagonal
elements of corr(G) shows a left-shifted distribution for the
Householder-regularized model, confirming its effective-
ness in enhancing filter diversity and reducing redundancy.

4. Dynamic Routing in Capsule Network

Algorithm 1 Dynamic Routing

procedure ROUTING(’EL]'H, r, 1)
for all capsule ¢ in layer [and capsule j in layer
for T iterations do
for all capsule i in layer [do ¢; < softmax(b;)

for all capsule j in layer (I + 1) do s; <
22 Cigl)i

for all capsule j in layer ([+ 1) do v; <
squash(s;)

for all capsule 7 in layer [and capsule j in layer
(l + 1) do bq;j «— bij + ﬁj‘z * U5

return v;

Algorithm | describes the dynamic routing algorithm.
This algorithm allows lower-level capsule output vectors to
be allocated to higher-level capsules based on their simi-
larity, thereby achieving an adaptive feature combination.
However, as evident from ZZ cijﬁj‘i, each higher-level
capsule is a weighted sum of lower-level capsules. The
higher-level capsules are fully connected with the lower
level. Furthermore, the routing algorithm fundamentally
serves as an unsupervised clustering process for capsules,
requiring r iterations to converge the coupling coefficients
c. It’s crucial to strike a balance in choosing r: an
inadequate number of iterations may hinder convergence
of ¢, impairing routing efficacy, while an excessive count
increases computational demands.

In Conclusion, it is crucial to introduce a straightfor-
ward, iterative-free routing algorithm.

