
OrthCaps: An Orthogonal CapsNet with Sparse Attention Routing and Pruning

Supplementary Material

1. Symbols and abbreviation used in this paper

Symbol Description

OrthCaps Orthogonal Capsule Network

OrthCaps-S Shallow network variant of OrthCaps

OrthCaps-D Deep network variant of OrthCaps

x Input image

l Layer index

Φ0 Features from initial convolutional layer

ul,i/(Ul) Capsules/ (matrix) at layer l
vl+1,i/(Vl+1) Capsules/ (matrix) at layer l + 1
n Capsule count in layer l
m Capsule count in layer l + 1
d Capsule dimension

W Feature map width

H Feature map height

B Batch size

uflat Flattened capsules

uordered Capsules ordered by their L2-norm

upruned Pruned capsules

mi/(M) Mask column/matrix for pruned capsule layer

tij/(T ) Cosine similarities/ (matrix) for pruned capsule layer

θ Threshold for pruned capsule layer

Q,K, V Attention routing components: Query, Key, Value

WQ,WK ,WV Weight matrices for Q, K, V

ci,j/(C) Coupling coefficients/ (matrix) for attention routing

sl+1,j/(Sl) Votes/ (matrix) for attention routing

W Weight matrix for simplified attention routing

g Activation function

H Householder matrix

ai Unit vector in Householder matrix formulation

bi Learnable vector in Householder matrix

2. experimental Setups

2.1. hyperparameters

Hyperparameter Value

Batchsize 512 (4 parallelled)

Learning rate 5e-3

Weight decay 5e-4

Optimizer AdamW

Scheduler CosineAnnealingLR and 5-cycle linear warm-up

Epochs 300

Data augmentation RandomHorizonFlip, RandonClip with padding of 4

Dropout 0.25

m+ 0.9

m− 0.1

λ 0.5

θ 0.7

d 16

2.2. Setups

In this section, we describe the necessary Python library

and corresponding version for the experiments in the main

paper.

Library Version

pytorch 1.12.1

numpy 1.24.3

opencv-python 4.7.0.72

pandas 2.0.2

pillow 9.4.0

torchvision 0.13.1

matplotlib 3.7.1

icecream 2.1.3

seaborn 0.12.0

3. HouseHolder Orthogonalization

3.1. Proof of Lemma 1

Assumption:

Vl+1 = {vl+1,1, vl+1,2, . . . , vl+1,m} is a set of m
capsule vectors in layer l + 1 of the network. W is an

orthogonal matrix, i.e. WTW = I .

Proof:

we aim to prove that the cosine similarity tij between

any two capsules vl+1,i and vl+1,j remains constant after

multiplied by W . For an orthogonal matrix W , the dot

product and vector lengths are preserved. Let ṽl+1,i =
Wvl+1,i, ṽl+1,j = Wvl+1,j denote the transformed vectors.

Thus, we have:

ṽl+1,i · ṽl+1,j = (Wvl+1,i)
T (Wvl+1,j)

= vTl+1,iW
TWvl+1,j

= vTl+1,ivl+1,j

(1)

and

∥ṽl+1,i∥2 =
√

(Wvl+1,i)T (Wvl+1,i)

=
√
v
T

l+1,iW
TWvl+1,i

=
√
v
T

l+1,ivl+1,i

= ∥vl+1,i∥2

(2)

Thus, we obtain transformed cosine similarity t̃ij in Eq. (3):

t̃ij =
(ṽl+1,i) · (ṽl+1,j)

∥ṽl+1,i∥2∥ṽl+1,j∥2
=

vl+1,i · vl+1,j

∥vl+1,i∥2∥vl+1,j∥2
= tij

(3)

Therefore, orthogonal transformations preserve the cosine

similarity between any two vectors.



3.2. Proof of Lemma 3

Proof:

Let W represent one of WQ,WK ,WV as W can be

expressed as

W = H0H1 . . . Hd−1 (4)

where Hi = I − 2aia
T
i . We have

WTW = HT
d−1 . . . H

T
1 H

T
0 H0H1 . . . Hd−1 (5)

We demonstrate that Hi is orthogonal, i.e. HT
i Hi = I .

This is obvious, as

HT
i Hi = (I − 2aia

T
i )

T (I − 2aia
T
i )

= I − 4aia
T
i + 4aia

T
i = I

(6)

Therefore, Equation (5) can be written as WTW =
I . . . I
︸ ︷︷ ︸

d

= I .

3.3. Householder as a Regularization Technique

Figure 1. The normalized histogram of pairwise filter similarities

in standard ResNet34 with different regularizers. HouseHolder or-

thogonalization method shows the best performance of descending

filter similarity.

We demonstrate Householder’s role as a regularization

technique for neural networks. For ResNet18, we flatten

and concatenate convolutional kernels into a matrix W , and

orthogonalize it to minimize off-diagonal elements, which

reduces channel-wise filter similarity and redundancy. To

quantify these properties, we used Guided Backpropagation

to dynamically visualize the activations[38]. Compared to

directly computing the covariance matrix of convolutional

kernels, The gradient-based covariance matrix offers a more

comprehensive view of the dynamic behavior of filters. We

define the gradients from Guided Backpropagation as G and

compute its gradient correlation matrix corr(G) as:

(diag(KGG))
− 1

2 KGG (diag(KGG))
− 1

2 (7)

where KGG = 1

M

(
(G− E[G])(G− E[G])T

)
, M is

the number of channels. Fig. 1 of the off-diagonal

elements of corr(G) shows a left-shifted distribution for the

Householder-regularized model, confirming its effective-

ness in enhancing filter diversity and reducing redundancy.

4. Dynamic Routing in Capsule Network

Algorithm 1 Dynamic Routing

procedure ROUTING(ûj|i, r, l)
for all capsule i in layer l and capsule j in layer

(l + 1) do bij ← 0

for T iterations do

for all capsule i in layer l do ci ← softmax(bi)

for all capsule j in layer (l + 1) do sj ←∑

i cij ûj|i

for all capsule j in layer (l + 1) do vj ←
squash(sj)

for all capsule i in layer l and capsule j in layer

(l + 1) do bij ← bij + ûj|i · vj
return vj

Algorithm 1 describes the dynamic routing algorithm.

This algorithm allows lower-level capsule output vectors to

be allocated to higher-level capsules based on their simi-

larity, thereby achieving an adaptive feature combination.

However, as evident from
∑

i cij ûj|i, each higher-level

capsule is a weighted sum of lower-level capsules. The

higher-level capsules are fully connected with the lower

level. Furthermore, the routing algorithm fundamentally

serves as an unsupervised clustering process for capsules,

requiring r iterations to converge the coupling coefficients

c. It’s crucial to strike a balance in choosing r: an

inadequate number of iterations may hinder convergence

of c, impairing routing efficacy, while an excessive count

increases computational demands.

In Conclusion, it is crucial to introduce a straightfor-

ward, iterative-free routing algorithm.


