
A. Implementation Details

We use the first two pixel-based stages of the DeepFloyd

IF [24] diffusion model. Specifically, we use the first stage

which produces images of size 64×64, and the second stage

which upsamples images to 256 × 256. Our method is ap-

plied in both stages, by implementing view transformations

for both resolutions. DeepFloyd IF additionally predicts the

variance, along with a noise estimate. We reduce multiple

variance estimates by also taking a mean. We use a clas-

sifier guidance strength between 7 and 10, and between 30

and 100 inference steps depending on the prompt. We use

the M size models for both stages.

Because DeepFloyd IF also estimates variances, we need

to apply inverse views to these variance estimates, in ad-

dition to the noise estimates. For pixel permutation based

views, we simply apply the inverse permutation to the vari-

ance estimates. For inversion, the inverse transformation

would be negating the predicted logged variance, which

does not make sense. We find that simply not inverting the

variance estimates works well in this case.

DeepFloyd IF additionally uses a third super resolution

stage, which is the Stable Diffusion x4 upscaler. This model

upscales from 256 × 256 to 1024 × 1024. Because this

model is a latent model, we do not apply our method to it.

However, we find that we can use it with no modification

to upscale our illusions without any loss in quality in the

different views. We do this by upsampling conditioned on

the prompt associated with the identity view. All results in

Fig. 1 have been upsampled in this way.

B. Dataset Collection

Our dataset consists of a list of styles, such as "a street

art of..." or "an oil painting of...", and a

list of subjects such as "an old man" or "a snowy

mountain village". Subjects and styles were cho-

sen by hand, using GPT-3.5 for inspiration. Prompt pairs

are generated by randomly sampling a style prompt and

prepending it to two randomly chosen subject prompts.

The CIFAR dataset was constructed by taking the 10

classes of CIFAR-10 as our subjects, and using the prompt

"a painting of" as the style prompt. We take all 45

pairs of subjects, and prepend the style prompt to the subject

prompts, resulting in 45 prompt pairs.

C. Additional Results

We provide additional qualitative results in this section.

In Fig. 10, we compare our method to baselines, using

prompts from our dataset and the CIFAR prompt dataset.

This is an extension of Fig. 5. We also generate more

illusions with 90° and 180° rotations, ambigrams, “poly-

morphic” jigsaw puzzles, color inversion, and vertical flips,

which can all be found in Fig. 12. In Fig. 13, we generate
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Figure 10. Qualitative Comparisons. We compare more illusions

generated by baselines to our illusions. We show examples from

both our prompt dataset and the CIFAR prompt dataset.
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Figure 11. Combining Noise Estimates. We show that mean

reduction does better than alternating with an example of a 4-view

sample image.

several flip illusions with the same flipped prompt, and dif-

ferent unflipped prompts, and we show flipped versions of

these illusions in Fig. 14.

D. Random Samples

We provide more random samples generated using our

method. For rotations, color inversion, and vertical flips,

please refer to Fig. 16. For three-view, inner rotation, “poly-

morphic” jigsaw puzzles, and patch and pixel permutation

views, please refer to Fig. 17. We also provide random

samples generated with prompts from the CIFAR dataset

in Fig. 15.

The CIFAR prompt pair results, in Fig. 15 as well
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Figure 12. Qualitative Samples. We show more illusions with views such as rotations, flips, color inversion, and jigsaw puzzles.

as Tab. 1, are included as a proxy for random prompts. We

note that systematically sampling truly random prompts for

evaluation is tricky. Firstly, there is no standard method for

sampling a random prompt. And secondly, not all prompt

pairs make for good illusions. A straightforward example

of this would be prompt pairs that differ in style. There-

fore, evaluating illusion generation on completely random

prompts may result in meaningless or misleading results,

and as such prompts in Fig. 8, Fig. 16, and Fig. 17 are to

some extent curated.

E. The Art of Choosing Prompts

We find that choosing good prompts is important to achiev-

ing good illusions. We lay out a few rules of thumb here.

Firstly, it is very hard to reason as to what will make good

illusions. Prompts that one may believe to work easily

can fail consistently, and prompts that one may believe to

have no chance of working may work fantastically. We

find that more abstract styles, such as "a painting" or

"a drawing" work much better than realistic styles such

as "a photo of". We believe this is because the con-

straints on realistic styles is too strong for illusions to work

well. We also find that human faces make for good illusions,

perhaps due to the sensitivity of the human visual system to

face-like stimuli.

F. Jigsaw Puzzle Implementation

We produce jigsaw puzzles by implementing a rearrange-

ment of puzzle pieces as a permutation of pixels. We first

hand-draw three puzzle pieces—a corner, edge, and cen-

ter piece—such that they can disjointly tile a 64 × 64, a

256× 256, or a 1024× 1024 image. All pieces in the puz-

zle are one of these three pieces, in different orientations.

We then sample a random permutation of corner, edge, and

center pieces respectively, and translate this permutation of

pieces to a permutation of pixels.

G. Combining Noise Estimates

Rather than taking the mean of noise estimates, we also ex-

perimented with alternating or cycling through noise esti-

mates by timestep, as is done in [42]. However, we find

that this can lead to “thrashing,” in which the sample is op-

timized in different directions at different timesteps, leading

to poor quality. Moreover, in illusions with more than two

views, each view gets fewer denoising steps, resulting in

lower quality illusions. For example, given four prompts

each matched to a rotation of the image (i.e., "a teddy",

"a bird", "a rabbit", and "a giraffe"), the

mean reduction outputs images with higher quality than the

alternating method as shown in Fig. 11.
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Figure 13. Flip illusions. For each row, the prompt of the flipped image is the same. We encourage the reader to guess what the flipped

prompt is. For an answer and flipped illusions, please see Fig. 14.

H. Linearity of Views

As discussed in Sec. 3.3, when a view v is a linear transfor-

mation, it satisfies:

v(xt) = v(wsignal
t

x0 + wnoise
t

ε) (10)

= w
signal
t

v(x0) + wnoise
t

v(ε). (11)

This is convenient because applying v to the noisy image xt

is equivalent to applying v to the signal, x0, and the noise,

ε, independently. In addition, the result is a linear combi-

nation of transformed signal and transformed noise, and is

weighted as the diffusion model expects for timestep t.

However, there may be other conditions that work. For

example, we could enforce

v(xt) = v(wsignal
t

x0 + wnoise
t

ε) (12)

= w
signal
t

v1(x0) + wnoise
t

v2(ε), (13)

with the interpretation being that v somehow acts on the

signal and noise in different ways, through v1 and v2, and

combines them with the correct weightings. We leave this

for future work.

I. Statistical Consistency

We provide a proof that for ε ∼ N (0, I) and square ma-

trix A, Aε ∼ N (0, I) if and only if A is orthogonal, stated

in Sec. 3.3. By properties of Gaussians, Aε is also Gaus-

sian, so we need only compute mean and covariances. The

mean is given by

E[Aε] = AE[ε] = 0. (14)

Because the mean is 0, the covariance is given by

Cov(Aε) = E[(Aε)(Aε)ᵀ] (15)

= AE[εεᵀ]Aᵀ (16)

= AA
ᵀ (17)

So if Aε ∼ N (0, I), then we must have Cov(Aε) =
AA

ᵀ = I , or equivalently A must be orthogonal. And if A

is orthogonal, then AA
ᵀ = I and Aε ∼ N (0, I).
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Figure 14. Flip illusions. Flipped illusions from Fig. 13, revealing the flipped prompt. Please refer to Fig. 13 for the unflipped images.
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Figure 15. Random Samples. We provide random samples for vertical flips using prompts from the CIFAR dataset. We show both views

of the illusions side-by-side.
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Figure 16. Random Samples. We provide random samples for rotations, negations, and vertical flip views. We show both views of the
illusions side-by-side.
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Figure 17. Random Samples. We provide random samples for 3-view, inner rotation, jigsaw puzzle, and patch and pixel permutation
views. We show all views of the illusions side-by-side.



Figure 18. Cut Your Own Polymorphic Jigsaw! We invite the reader to cut out their own polymorphic jigsaw puzzle, and try to discover
both solutions.
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