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A. Datasets and data preparation

OASIS - Open Access Series of Imaging Studies: The

OASIS7 dataset [25, 41] is a publicly accessible database of

T1-weighted MRI data. In this study, this dataset was em-

ployed for inter-patient registration in alignment with the

2021 Learn2Reg challenge [25], where 394, 19, and 38

MRI scans were allocated for training, validation, and in-

ference, respectively. FreeSurfer was utilized to pre-process

the samples, providing label maps for 35 anatomical struc-

tures with the voxel size 160 × 192 × 224 for subsequent

evaluation.

IXI - Information eXtraction from Images: Publicly

available IXI8 contains 576 T1-weighted brain MRI sam-

ples with 30 anatomical structures that were split into 403,

58, and 115 for training, validation, and test sets, respec-

tively. The MRI volumes were cropped into the voxel size

of 160× 192× 224. The models were trained and validated

on 806 and 116 unique arbitrary pairs of MRI samples, re-

spectively. In patient-to-atlas registration inference, three

arbitrary pairs of MRI samples were selected as the atlases

and 50 arbitrary samples were registered to these atlases. In

total, 150 patient-to-atlas registrations were performed for

assessment. For the inter-patient registration inference, 115

pairs were randomly chosen for the main evaluation of the

methods.

7https://github.com/adalca/medical- datasets/

blob/master/neurite-oasis.md
8https://brain-development.org/ixi-dataset

ADNI - The Alzheimer’s Disease Neuroimaging Ini-

tiative: ADNI9 [27] is a large-scale study aimed at de-

veloping methods for the early detection and tracking of

Alzheimer’s disease. It encompasses longitudinal data, in-

cluding MRI and PET scans from subjects with normal cog-

nition, mild cognitive impairment, and early Alzheimer’s

disease. We used the T1-weighted MRI data for evalua-

tion with 45 labels. The MRI scans are first registered to

MNI152 space and then preprocessed by FreeSurfer, in-

cluding skull stripping, normalization, subcortical struc-

tures segmentation, and cortical surface extraction. We uti-

lized both the dice score of the subcortical segmentation la-

bel and the surface distance of cortical surfaces to compare

the performance of the methods. The inter-patient regis-

tration inference contains 150 pairs that were selected ran-

domly. Similar to the patient-to-atlas registration in IXI,

three arbitrary pairs of MRI samples were selected as the at-

lases and the other 50 arbitrary samples as moving, forming

a total of 150 patient-to-atlas pairs for the patient-to-atlas

experiment.

LPBA - LONI Probabilistic Brain Atlas: LPBA10 [53]

comprises 40 T1-weighted 3D brain MR, each of which

comes with segmentation ground truth of 56 anatomical

structures. The LPBA dataset is used for inference only, so

we just registered the samples to MNI152 through an affine

transformation. In the inter-patient registration, a total of

120 pairs were randomly selected, and these pairs remained

consistent across all employed methods. Likewise, we it-

erated the patient-to-atlas registration for three randomly

chosen samples, each serving as an atlas in turn, and the re-

maining 39 MRI volumes were registered to the designated

atlas. Hence, there are 117 pairs for the patient-to-atlas ex-

periment.

Mindboggle-101: The Mindboggle dataset11 [34] com-

prises 41 anatomically labeled brain surfaces derived from

101 healthy individuals. The dataset is organized into four

subsets, namely HLN (containing 12 scans), MMRR (con-

taining 23 scans), NKI (containing 42 scans), and OASIS

(containing 20 scans). Since the OASIS subset was uti-

lized in the OASIS experiment, it has been excluded from

the inference in the Mindboggle experiment. The MRI

volumes are registered into the MNI152 space through an

affine transformation, with a resolution of 1× 1× 1m3 and

a voxel grid of 160×192×224 voxels. Within each subset,

an arbitrary sample was selected as the atlas, and the re-

9https://adni.loni.usc.edu/
10https : / / www . loni . usc . edu / research / atlas _

downloads
11http://mindboggle.info



maining samples were subsequently registered to this atlas.

This procedure was iterated two additional times, resulting

in a total of 33, 66, and 123 to-be-registered pairs for the

HLN, MMRR, and NKI subsets, respectively, in the context

of patient-to-atlas registration. In the inter-patient registra-

tion, 15, 33, and 66 pairs were randomly selected from the

HLN, MMRR, and NKI subsets.

B. Assessment metrics

Dice score: The Dice score measures the accuracy between

the warped segmentation map of moved image A and its

corresponding reference B, defined as

Dice = 2
|A ∩B|

|A|+ |B|
(9)

Jacobian determinant: The absolute value of Jacobian de-

terminants provides information about the local changes in

the deformation field, indicating expansion or contraction

near the specified voxel location. A Jacobian determinant

with a non-positive value signifies a locally non-invertible

transformation. Similarly, SDlogJ calculates the standard

deviation of the logarithm of the Jacobian determinant as-

sociated with the deformation field.

HD95: This metric computes 95% percentile of Hausdorff

distance of segmentation results.

Surface Distance: In Sec. D.2 in Supplementary, we also

reported the surface results of various registration methods

for the ADNI scans. The deformed surfaces were assessed

by 90-percentile Hausdorff distance (HD) and the average

symmetric surface distance (ASSD), which quantifies the

average boundary distance between surfaces.

C. Experimental setup

All registration models were trained for 500 epochs on an

NVIDIA A100 GPU equipped with 80GB VRAM, employ-

ing the Adam optimizer with a learning rate of 1 × 10−4

and a batch size of 1. The regularization parameter λreg.

was set to 1. For the OASIS dataset, we trained H-ViT on

394 cross-sectional MRIs, and the deformation fields of

the test set were assessed using the MICCAI Learn2Reg

platform, accessible at https://learn2reg.grand-

challenge.org/Learn2Reg2021. In the remaining

datasets, we assessed the methods networks trained on IXI.

All the techniques, including ours, underwent unsupervised

training using normalized cross-correlation (NCC) and a

3D spatial gradient. λsmooth was set to 1 during training.

We used default network parameter settings recommended

by authors for the competing methods, and the imple-

mentations are available at https://github.com/

junyuchen245 / TransMorph _ Transformer _

for_Medical_Image_Registration.

VoxelMorph [6] adopts a CNN-based UNet, comprising

encoding layers with a feature size of [16, 32, 32, 32] and

corresponding decoder with [32, 32, 32, 32, 32, 16, 16] fea-

tures.

MIDIR [48]: MIDIR is a diffeomorphic model that em-

ploys a B-spline FFD parameterization of the Stationary Ve-

locity Field (SVF) for registration. This approach aims to

achieve smooth diffeomorphic deformation during the reg-

istration process. The UNet network in MIDIR has encoder

layers configured as [16, 32, 32, 32, 32], and the decoder

layers are set to [32, 32, 32, 32].

CoTr [68]: CoTr incorporates CNN-encoder, decoder, and

FFN architectures. To maintain consistency, we utilized the

code available at https://github.com/YtongXie/

CoTr and followed the recommended settings provided by

the authors.

CycleMorph [32] employs registration UNet blocks with

an encoder specified as [16, 32, 32, 32, 32] and a decoder

featuring maps of [32, 32, 32, 8, 8, 3]. The parameters α, β,

and λregis were configured to values of 0.1, 0.5, and 0.02,

respectively, in adherence to the recommendations set forth

by the authors.

PVT [63]: In the context of registration using the PVT

model, we followed the recommended configuration out-

lined by Chen et al. [10]. The embedding dimension for

layers is specified as [20, 40, 200, 320] with a voxel patch

size of 4. The number of heads for the layers is set as [2,

4, 8, 16], and the MLP ratio follows [8, 8, 4, 4]. The depth

of layers is configured as [3, 10, 60, 3]. Additionally, the

spatial reduction rate for each transformer encode layer is

determined as [8, 4, 2, 1].

ViT-V-Net [8] has a hybrid CNN-Transformer architecture.

The CNN-based UNet component features an encoder con-

figuration of [16, 32, 32] and a decoder of [96, 48, 32, 32,

16]. For the Transformer segment, the voxel patch size is

set to 8, the embedding size is 252, and the MLP dimension

is 3072, with 12 heads and 12 layers. The dropout for at-

tention is 0, while the dropout for the Transformer is set to

0.1.

TransMorph [10] features a Swin Transformer with spe-

cific configurations, including an embedding dimension of

96, a voxel size of 4, and a window size of [5, 6, 7, 7]. The

transformer has depths specified as [2, 2, 4, 2] and heads

as [4, 4, 8, 8]. The MLP ratio is set to 4. In the case of

TransMorph-Bspl, which involves B-spline transformation,

the control point spacing is set at 2, aligning with the value

utilized in MIDIR. For the TransMorph-Bayes model, the

Monte-Carlo dropout probability is configured at 0.15.

nnFormer [74]: To ensure a fair comparison, we applied

identical Transformer parameter values from TransMorph

to nnFormer, given that nnFormer was also developed based

on the Swin Transformer architecture.



Left WM Surface Right WM Surface Left Pial Surface Right Pial Surface

ASSD ↓ HD ↓ ASSD ↓ HD ↓ ASSD ↓ HD ↓ ASSD ↓ HD ↓

Affine 1.747± 0.114 3.852± 0.353 1.761± 0.103 3.960± 0.437 1.859± 0.104 4.047± 0.307 1.885± 0.115 4.124± 0.403

VoxelMorph [6] 1.103± 0.102 2.619± 0.241 1.118± 0.096 2.750± 0.391 1.112± 0.107 2.741± 0.273 1.146± 0.109 2.865± 0.312

MIDIR [48] 1.271± 0.075 2.921± 0.229 1.264± 0.076 2.900± 0.247 1.318± 0.089 3.019± 0.264 1.330± 0.090 3.026± 0.230

CycleMorph [32] 1.075± 0.090 2.640± 0.269 1.093± 0.109 2.716± 0.371 1.084± 0.094 2.700± 0.268 1.124± 0.112 2.812± 0.322

CoTr [68] 1.169± 0.089 2.712± 0.187 1.178± 0.093 2.762± 0.270 1.234± 0.118 2.929± 0.279 1.250± 0.113 2.977± 0.238

nnFormer [74] 1.272± 0.107 2.840± 0.231 1.246± 0.075 2.828± 0.253 1.278± 0.105 2.943± 0.262 1.272± 0.082 2.929± 0.214

PVT [63] 1.212± 0.097 2.819± 0.264 1.205± 0.104 2.848± 0.345 1.239± 0.111 2.964± 0.275 1.234± 0.115 2.976± 0.295

ViT-V-Net [8] 1.054± 0.094 2.580± 0.240 1.064± 0.096 2.666± 0.354 1.060± 0.093 2.718± 0.269 1.089± 0.106 2.820± 0.301

TransMorph-Bayes [10] 0.935± 0.082 2.261± 0.192 0.937± 0.094 2.263± 0.289 0.908± 0.086 2.230± 0.216 0.935± 0.108 2.320± 0.285

TransMorph-bspl [10] 0.975± 0.065 2.464± 0.341 0.953± 0.078 2.354± 0.276 1.038± 0.077 2.485± 0.260 1.027± 0.093 2.471± 0.255

Proposed H-ViT 0.877± 0.075 2.224± 0.223 0.878± 0.093 2.233± 0.283 0.877± 0.069 2.213± 0.224 0.904± 0.094 2.311± 0.316

Table 8. Surface distance results of different registration techniques for 20 arbitrary cross-sectional pairs from the ADNI dataset

C.1. HViT implementation details

H-ViT employs an encoder with five layers [32, 64, 128,

256, 512] and a decoder with [192, 192, 192, 192]. The

H-ViT Transformer parameters were configured as follows:

the embedding dimension fe was set to 192, the number of

feature maps Sh to 4, the voxel patch size to 2× 2× 2, the

model depth to 1, MLP ratio in FFN to 2, drop rate to 0,

and the number of heads to 32. Due to GPU memory limi-

tations, we utilized half resolution for the deformation field,

subsequently upsampled by a factor of 2. The parameters

for the small H-ViT, as used in Tab. 7 of the ablation study,

were configured as follows: the number of feature maps Sh

was set to 3, the embedding dimension fe to 128, the batch

size to 4, and the number of training epochs to 200.

D. Experimental results

D.1. Surface registration results on ADNI

The results of surface distance measurements, assessed by

ASSD and HD metrics, for 20 surface pairs from the ADNI

dataset are presented in Tab. 8.



D.2. Experiments with ADNI

Method Attention Inter-Patient Registration Patient-to-Atlas Registration

Mechanism Dice ↑ |JΦ| ≤ 0 (%) ↓ Dice ↑ |JΦ| ≤ 0 (%) ↓

Affine 0.531±0.082 – 0.477±0.052 –

VoxelMorph [6] – 0.692±0.214 0.986±0.350 0.646±0.226 1.278±0.368

MIDIR [48] – 0.666±0.220 0.174±0.158 0.635±0.227 0.274±0.181

CycleMorph [32] – 0.687±0.217 1.062±0.407 0.655±0.225 1.414±0.409

CoTr [68] Self-Att. 0.654±0.228 0.663±0.259 0.623±0.231 0.926±0.341

nnFormer [74] Self-Att.+Global-Att. 0.633±0.224 1.210±0.377 0.604±0.229 1.617±0.417

PVT [63] Self-Att. 0.610±0.230 1.938±0.421 0.579±0.234 2.297±0.420

ViT-V-Net [8] Self-Att. 0.727±0.210 0.926±0.328 0.686±0.219 1.173±0.312

TransMorph-Bayes [10] Self-Att. 0.726±0.209 1.207±0.350 0.696±0.215 1.562±0.429

TransMorph-bspl [10] Self-Att. 0.730±0.208 <0.001 0.702±0.213 <0.001

Proposed H-ViT Self-Att. + Cross-Att. 0.760±0.203 0.445±0.207 0.730±0.210 0.648±0.261

Table 9. Quantitative evaluation results for the registration methods on the ADNI dataset for 45 anatomical structures over 150 random

pairs for inter-patient and 150 pairs for patient-to-atlas registrations.



Figure 6. Dice score results for the inter-patient registration of various methods on the ADNI dataset per anatomical structure (continued)



Figure 7. Dice score results for the inter-patient registration of various methods on the ADNI dataset per anatomical structure



Figure 8. Dice score results for the patient-to-atlas registration of various methods on the ADNI dataset per anatomical structure (continued)



Figure 9. Dice score results for the patient-to-atlas registration of various methods on the ADNI dataset per anatomical structure



Figure 10. More examples of axial and sagittal slices from the ADNI dataset and outcomes (from top to bottom: MRI, segmentation,

difference in segmentation between ground truth and segmented results, and the deformed grid) of different registration methods, with

corresponding Dice scores below the segmentation results. In the third row, red highlights signify segmentation disparities between ground

truth and segmented results, while the black ones represent accurate segmentation (optimal with fewer red pixels).



D.3. Experiments with IXI

Figure 11. Dice score results for the inter-patient registration of various methods on the IXI dataset per anatomical structure (continued)



Figure 12. Dice score results for the inter-patient registration of various methods on the IXI dataset per anatomical structure



Figure 13. Dice score results for the patient-to-atlas registration of various methods on the IXI dataset per anatomical structure (continued)



Figure 14. Dice score results for the patient-to-atlas registration of various methods on the IXI dataset per anatomical structure



Figure 15. Examples of axial and coronal slices from the IXI dataset and outcomes (from top to bottom: MRI, segmentation, difference

in segmentation between ground truth and segmented results, and the deformed grid) of different registration methods, with corresponding

Dice scores below the segmentation results. In the third row, red highlights signify segmentation disparities between ground truth and

segmented results, while the black ones represent accurate segmentation (optimal with fewer red pixels).



D.4. Experiments with LPBA

We apologize for a minor error in Tab. 4 in the main draft. There is a correction regarding the total number of MRI pairs for

patient-to-atlas registration, which was mistakenly stated as 108. The accurate number is 117. This will be rectified in the

upcoming rebuttal.

Method Attention Inter-Patient Registration Patient-to-Atlas Registration

Mechanism Dice ↑ |JΦ| ≤ 0 (%) ↓ Dice ↑ |JΦ| ≤ 0 (%) ↓

Affine 0.561±0.018 – 0.543±0.017 –

MIDIR [48] – 0.624±0.017 0.017±0.002 0.629±0.017 0.016±0.002

CycleMorph [32] – 0.654±0.017 0.008±0.002 0.645±0.016 0.007±0.002

nnFormer [74] Self-Att.+Global-Att. 0.626±0.018 0.008±0.001 0.631±0.016 0.008±0.001

PVT [63] Self-Att. 0.637±0.016 0.013±0.001 0.642±0.016 0.013±0.001

ViT-V-Net [8] Self-Att. 0.658±0.017 0.007±0.002 0.650±0.017 0.006±0.000

TransMorph-Bayes [10] Self-Att. 0.658±0.017 0.005±0.000 0.655±0.015 0.005±0.000

TransMorph-bspl [10] Self-Att. 0.670±0.018 <0.001 0.666±0.016 <0.001

Proposed H-ViT Self-Att. + Cross-Att. 0.704±0.016 0.002±<0.001 0.694±0.015 0.002±<0.001

Table 10. Quantitative evaluation results for the registration methods on the LPBA dataset for 56 anatomical structures over 120 random

pairs for inter-patient and 117 pairs for patient-to-atlas registrations.



Figure 16. Dice score results for the inter-patient registration of various methods on the LPBA dataset per anatomical structure (continued)



Figure 17. Dice score results for the inter-patient registration of various methods on the LPBA dataset per anatomical structure



Figure 18. Dice score results for the patient-to-atlas registration of various methods on the LPBA dataset per anatomical structure (contin-

ued)



Figure 19. Dice score results for the patient-to-atlas registration of various methods on the LPBA dataset per anatomical structure



D.5. Experiments with Mindboggle

We apologize for the mistake regarding Tab. 6, where the results of ‘Inter-Patient’ and ‘Patient-to-Atlas’ were erroneously

reported interchangeably. This has been rectified and reported in Tab. 11. We will modify the inaccuracy in Tab. 6 during the

rebuttal.

Method Attention Inter-Patient Registration Patient-to-Atlas Registration

Mechanism Dice ↑ |JΦ| ≤ 0 (%) ↓ Dice ↑ |JΦ| ≤ 0 (%) ↓

Affine 0.537±0.041 – 0.534±0.034 –

VoxelMorph [6] – 0.674±0.197 0.821±0.170 0.666±0.201 0.831±0.163

MIDIR [48] – 0.637±0.197 0.403±0.215 0.539±0.292 0.347±0.205

CycleMorph [32] – 0.679±0.194 1.044±0.211 0.671±0.199 1.064±0.189

CoTr [68] Self-Att. 0.633±0.214 0.691±0.163 0.630±0.218 0.701±0.141

nnFormer [74] Self-Att.+Global-Att. 0.622±0.210 1.077±0.210 0.618±0.213 1.090±0.189

PVT [63] Self-Att. 0.588±0.214 2.006±0.254 0.583±0.216 2.034±0.217

ViT-V-Net [8] Self-Att. 0.700±0.186 1.168±0.225 0.695±0.187 0.840±0.573

TransMorph-Bayes [10] Self-Att. 0.699±0.186 0.702±0.106 0.695±0.189 0.716±0.082

TransMorph-bspl [10] Self-Att. 0.699±0.181 <0.001 0.695±0.183 <0.001

Proposed H-ViT Self-Att. + Cross-Att. 0.731±0.170 0.328±0.061 0.726±0.173 0.335±0.049

Table 11. Quantitative evaluation results for the registration methods on the Mindboggle dataset for 41 anatomical structures over 111

random pairs for inter-patient and 222 pairs for patient-to-atlas registrations.



Figure 20. Dice score results for the inter-patient registration of various methods on the Mindboggle dataset per anatomical structure

(continued)



Figure 21. Dice score results for the inter-patient registration of various methods on the Mindboggle dataset per anatomical structure



Figure 22. Dice score results for the patient-to-atlas registration of various methods on the Mindboggle dataset per anatomical structure

(continued)



Figure 23. Dice score results for the patient-to-atlas registration of various methods on the Mindboggle dataset per anatomical structure



Figure 24. Examples of axial and sagittal slices from the Mindboggle-MMRR dataset (continued)



Figure 25. An example coronal slice from the Mindboggle-MMRR dataset

Figure 26. An example coronal slice from the Mindboggle-NKI dataset (continued)



Figure 27. Examples of axial and sagittal slices from the Mindboggle-NKI dataset



D.6. Visualization of the HViT’s dualattention

Fig. 28 to Fig. 31 illustrate examples of the attention outputs of the dual-attention mechanism for the final layer of the

deformation field, i.e. Sh = 4. The attention maps are averaged over the embedding channels, Ā =
∑

i=<fe>
Ai. We

also reported the energy of the averaged attention map as an indicator of activated weights: EĀ =
1

|Ω|

∑
p∈Ω

||Ā||2. The

registration tasks were performed in 3D, while this paper presents visualizations of representative slices in 2D. As evident

in the figures and highlighted by the energy values, incorporating more cross-attention units into the computation increas-

ingly activates the feature maps. This yields an improved representation of the deformation field, shown quantitatively and

qualitatively in the Experimental Sections.



Figure 28. Example attention maps of the deformation field at the fourth layer (Sh = 4) in H-ViT. The attention maps are averaged over

embedding channels. Numerical values beneath each map indicate respective energy levels. ECross−Att:n denotes the energy level for the

output of cross-attention at the n-th block. ’inp’ denotes the input feature map.



Figure 29. Example attention maps of the deformation field at the fourth layer (Sh = 4) in H-ViT



Figure 30. Example attention maps of the deformation field at the fourth layer (Sh = 4) in H-ViT



Figure 31. Example attention maps of the deformation field at the fourth layer (Sh = 4) in H-ViT



E. Ablation study on H-ViT’s parameters

Parameter Dice ↑ |JΦ| ≤ 0 (%) ↓

Number of Heads

8 0.801±0.072 0.201±0.130

16 0.803±0.072 0.201±0.130

32 0.803±0.073 0.201±0.132

64 0.805±0.072 0.211±0.132

Depth

1 0.803±0.073 0.201±0.132

2 0.804±0.072 0.215±0.133

4 0.805±0.071 0.222±0.135

Voxel Patch Size

2× 2× 2 0.803±0.073 0.201±0.132

4× 4× 4 0.803±0.073 0.202±0.133

6× 6× 6 0.804±0.073 0.207±0.132

Drop rate

0 0.803±0.073 0.201±0.132

0.1 0.802±0.073 0.186±0.131

0.2 0.801±0.073 0.179±0.128

Table 12. Ablation study on parameters of a small H-ViT for the IXI registration.


