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1. Methods

1.1. Realistic naive (no code) DP PSFs in simulations

For ours CADS framework, the coded DP PSFs are gen-
erated using the mask pattern and the naive (no code) DP
PSFs. Modelling the left, right naive DP PSFs accurately is
crucial for realistic simulations. The left, right dual-pixels
receive light from different halves of the lens. Thus in an
ideal scenario, the left, right naive DP PSFs are shaped as
semi-circular kernels. However, this is rarely seen in real-
world DP PSFs. Errors in manufacturing, optical aberra-
tions, and physical constraints for placement of microlenses
and sensor well depths can cause light leakage from the
other lens half [2, 10], making it look more like tapered
semi-circular halves. In [2], the authors designed a heuris-
tic model to simulate DP PSFs that look closer to the real-
world DP PSFs. The DP PSFs (hL

z , hR
z ) are modeled as

the Hadamard product of a 2D Butterworth filter with the
circle-of-confusion. We generate our simulated naive DP
PSFs in the same manner, choosing n = 1 as the filter or-
der, α = 2.5, β = 0.4, and smoothing strength of 7. We
generate PSFs for Nz = 21 depth planes spanning equally
both sides of the defocus. The left, right PSF z-stack cor-
responds to defocus blur sizes (or circle-of-confusion sizes)
ranging from -40 to +40 pixels (signed blur size). Our no-
code DP PSFs hL

z , hR
z that were used in simulations are

depicted in Fig. 1.

1.2. Occlusion-aware dual-pixel image rendering

For rendering accurate dual-pixel images, we adopt a multi-
plane representation of the scene, where the scene is divided
into discrete depth planes. Given the coded DP PSFs hL,C

z

and hR,C
z , the coded DP left, right images IL, IR of a 3D

scene can be expressed as a sum of 2D convolutions

IL =

K−1∑
k=0

hL,C
zk

∗ szk , IR =

K−1∑
k=0

hR,C
zk

∗ szk , (1)

where szk is the scene intensity map which falls into the
depth layer k (which is at depth z = zk), K are the number
of depth planes (or MPI planes), and ∗ is the 2D convolution
operator. To remove artifacts at the edges of the MPI depth
layers, we adopt the modifications to Eqn. 1 from Ikoma
et al. [6], thus we have a differentiable non-linear image
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Figure 1. Modelling parametric DP PSFs for realistic simula-
tions. (Top row) An ideal dual-pixel sensor would produce left,
and right semi-circular PSFs. However, real-world DP PSFs look
significantly different. The parametric model from [2] is used to
simulate more realistic no-code DP PSFs (Bottom row).

formation model as follows

IL =

K−1∑
k=0

hL,C
zk

∗ szk
EL

k

K−1∏
k′=k+1

(1−
hL,C
zk′ ∗ αzk′

EL
k′

),

IR =

K−1∑
k=0

hR,C
zk

∗ szk
ER

k

K−1∏
k′=k+1

(1−
hR,C
zk′ ∗ αzk′

ER
k′

),

(2)

where αzk is the binary depth mask corresponding to depth
layer k (which is at depth z = zk), EL,R

k are normalization
factors equal to hL,C

zk
∗
∑k

k′=0 αk′ and hR,C
zk

∗
∑k

k′=0 αk′

respectively. We further add a minor modification to the
above Eq 2 to the binary depth masks (or alpha maps) αk.
We first expand the alpha maps αk into 3x3 2D max-pooling
and then blend the maps into 2 adjacent depth layers instead
of 1 (using 2x1x1 3D avg-pooling), and then normalize the
alpha maps. Using 21 depth planes is not a very coarse di-
vision of the scene into MPI layers, thus the blending still
keeps the simulation realistic, while improving the render-
ing at edges of individual (and consecutive) MPI layers hav-
ing fewer fringes/artifacts.
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(A) End-to-end (E2E) learnt code 
for CADS

(C) MTF Analysis 

(B) E2E coded dual-pixel 
PSF z-stack
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Figure 2. CADS Learnt Mask. (A) shows the learned amplitude
mask and (B) shows the corresponding PSFs for different depths.
(C) shows the MTF of CADS PSF vs. Naive DP PSF (at a defo-
cussed depth, showing only left DP PSF). The higher MTF of the
CADS PSF indicates better conditioning of the PSF.

1.3. Evaluation Metrics

We evaluate our simulation results and compare our pro-
posed coded dual-pixel sensing approach (CADS) to naive
DP and naive standard-pixel cases, as well as to previous
works. We describe our evaluation metrics’ definitions here
Depth Metrics. For comparison with naive dual-pixel and
naive standard-pixel, we use absolute metrics -
• RMSE (RMS Error): 1

N

∑N
i=1 |D̂i −Di|2

• MAE (Mean Absolute Error): 1
N

∑N
i=1 |D̂i −Di|

• δ1 with threshold T : 1
N

∑N
i=1

(
max

(
D̂i

Di
, Di

D̂i

)
< T 1

)
For comparison with previous works, we use affine-
invariant metrics, as used in [5].
• AI(1): min

p,q

(∑N
i=1 |Di−(pD̂i+q)|

N

)
• AI(2): min

p,q

(∑N
i=1 |Di−(pD̂i+q)|2

N

)(1/2)

• 1 − |ρs|: ρs denotes the Spearman’s Rank Correlation
Coefficient.

AIF Metrics. For AIF deblurred predictions we compare
results using PSNR, SSIM, and LPIPS [14] metrics.

2. Results
2.1. End-to-end training results

We perform end-to-end training in simulations as outlined
in the CADS Section (Sec. 3). We initialize the mask with
a circular open aperture of pixelated size 21x21 (as men-
tioned in Sec 3.2.3). The mask resolution (in pixels) was
chosen based on competing factors. A coarser pixelation
(e.g., 7x7, 11x11) would mean the resulting blur would be

less informative for small defocus blurs and perform worse.
With finer pixelation one risks creating small feature sizes
— thereby causing severe diffraction-based distortion and
having additional computational costs for end-to-end train-
ing — hence the choice of 21x21. Different mask initializa-
tions were also tested; the circular open aperture initializa-
tion performed the best (on average, 0.35dB better in AIF
and 4% better in depth estimation).

Thus, with the above-mentioned mask initialization, we
train for 80 epochs on 20k FlyingThings3D scenes with a
batch size of 8. The mask learning phase is only for the
first 30 epochs, after which the mask is fixed. Cosine decay
scheduling is applied for the learning of mask parameters
(θC) and CADNet weights (θD) as well. In our mask pa-
rameterization, we initialize α to 0 and increase it using the
schedule αt = α0 +

t
8000 , where t is the total number of it-

erations. This is done to ensure smooth learning of a binary
coded mask [11]. An initial learning rate of 3 × 10−5 and
3 × 10−4 are used for CADNet weights (θD) and for the
mask parameters (θC), alongwith cosine decay scheduling.
During testing/inference, we explicitly threshold the mask,
setting it to be binary.

2.2. End-to-end CADS Learnt Mask

The learned mask and the corresponding left, right coded
DP PSFs are shown in Fig. 2. The CADS PSFs are better
conditioned as compared to the naive DP PSFs, as indicated
by the MTF plots in Fig. 2(C). The learned coded aperture
has the shape of a flattened ellipse (with a larger horizontal
diameter), with two dots inside. The possible reason for this
can be explained as follows. The intended goal is to learn
a mask that gives the best defocus map prediction and AIF
image prediction when coupled with dual-pixel sensors. In
order to do so, the coded DP PSFs should be able to show a
disparity effect with defocus, while having the shortest pos-
sible blur size. Since the disparity between the DP PSFs is
horizontal, the learned coded aperture maintains the hori-
zontal opening of the aperture, while reducing the vertical
opening. Furthermore, the two opaque dots near the center
on the horizontal axis potentially add to better conditioning
of the mask and ensure recovery of high-frequency texture
(mainly in the horizontal/x-direction).

2.3. Simulation results

2.3.1 Ablations on coded aperture

Coded aperture masks have been used previously for PSF
engineering to gain optimal deblurring and depth estima-
tion performance [3, 8, 11, 12]. These have been used in
the naive standard-pixel settings, and hence may not nec-
essarily translate to optimal performance in the dual-pixel
sensor setting. We compare the naive (no-code) DP case
and our end-to-end learned code with the following codes
in the dual-pixel sensor setting:



CADS Mask Depth Pred. AIF Pred.
MAE(mm) ↓ PSNR ↑ SSIM↑

No code 5.51 29.7 0.83
No code (50%) 5.77 30.6 0.85
Levin et al. [8] 5.54 30.6 0.85
MLS code [3] 5.64 30.3 0.85
Shedligeri et al. [11] 5.49 30.4 0.85
E2E learnt (ours) 5.15 31.2 0.87

Table 1. Coded Mask Ablation. Coded aperture DP outperforms
naive DP for AIF and depth prediction. Among coded DP de-
signs, the proposed end-to-end learned design offers the best per-
formance. Red indicates best, orange indicates second best.

Figure 3. Coded apertures considered for ablations. We test out
various coded apertures in conjunction with dual-pixel sensors in
simulations. From left to right, showing no code mask, no code
(50% size) mask, Levin et al. [8] mask, separable MLS code [15],
Shedligeri et al. [11] mask, and our proposed end-to-end learned
CADS mask.

• Open aperture (no-code) that is 50% smaller in area
• Code from Levin et al. [8], which was derived based on an

optimization problem formulated for constructing a desir-
able depth estimation mask.

• Separable MLS code from [3] that has flat singular value
spectrum and has been used for lensless imaging

• Code from Shedligeri et al. [11]. This code was learned
end-to-end for the purposes of depth estimation, albeit in
a standard pixel setting (not for dual-pixel sensors).

The coded apertures are depicted in Fig. 3. We trained
CADNet-Mono for the above masks while keeping the
mask fixed (no learning). The results of depth estima-
tion and deblurring performance are given in Table 1. All
the coded masks perform similarly in depth estimation and
show gains in deblurring performance. Our proposed end-
to-end learnt code possesses the novelty of being the first
one to be trained specifically for dual-pixel sensor imaging.
Hence, our end-to-end learnt code outperforms all the above
coded masks to give the best depth estimation and deblur-
ring performance.

2.3.2 Comparison with existing DP-sensing works

We test existing DP-sensing works on simulated naive DP
captures based on FlyingThings3D scenes and also on sim-
ulated naive DP captures based on NYUv2 scenes. Since
existing methods were designed for reconstructing from
naive DP captures, we created a simulated dataset of naive
(no code) DP captures, using the FlyingThings3D dataset

scenes and another one using NYUv2 dataset scenes. We
compare the following works
• DPDNet - the authors in [1] designed a UNet-based neu-

ral network to reconstruct the deblurred (all-in-focus) im-
age from DP captures, called DPDNet. DPDNet was
trained using supervised real-world AIF GT data. We use
the same trained model weights as given in their reposi-
tory.

• DDDNet - the authors in [9] designed a two-stage neu-
ral network (called DDDNet) to predict the disparity map
and the deblurred (all-in-focus) image of the scene from
DP captures. We use the same model weights as given in
their repository.

• Xin et al. 2021. In [13], an optimization problem was for-
mulated for simultaneous defocus map and all-in-focus
image recovery. We use the code given in their repository
and pass our simulated DP PSFs as arguments for the op-
timization problem. Owing to the fact that the runtime for
this was slow, we evaluate for a randomly selected set of
16 DP captures.

• Punnappurath et al. 2020. In [10], an optimization prob-
lem was formulated for recovering the disparity map from
DP captures, exploiting left-right kernel symmetry to do
so. We use the code given in their repository. Due to slow
inference time, we evaluate for a randomly selected set of
16 DP captures.

• Kim et al. 2023. In [7], the authors trained a stereo dis-
parity estimation network to handle bi-directional dispar-
ity, and then devised a self-supervised loss to learn dis-
parity based on the DPDBlur [1] dataset. We evaluate the
code given on their repository.

Table 2 shows the quantitative results of previous meth-
ods with our CADS method, and with our method for the
naive DP case as well. The simulated DP captures showed
bidirectional disparity in the left, right captures. Thus,
methods designed for uni-directional disparity did not work
well [9, 13]. Punnappurath et al. [10] outputs disparity
maps that resemble the ground truth but are not as accurate
as our methods. While Kim et al. [7] is trained to handle
bi-directional disparity, the error is higher, possibly due to
the fact that the self-supervised loss is not trained on the
simulated captures.

2.4. DSLR Photography results

2.4.1 Experimental setup

For real-world DSLR photography experiments, we use
the Canon EOS 5D Mark IV DSLR. It is equipped with
a 30MP color sensor (6880x4544 pixels) with a R-G-G-B
Bayer pattern, with pixel pitch p = 5.36 µm. For DSLR
photography, we capture naive DP images and CADS im-
ages with a Yongnuo 50 mm focal length lens with aperture
L = f/4 = 12.5 mm. We print our binary amplitude mask
having 12.5 mm diameter on transparency sheets, and place



FlyingThings3D dataset AIF Predictions Disparity Predictions
Method PSNR(dB)↑ SSIM↑ AI(1)↓ AI(2)↓ 1− |ρs| ↓

DPDNet [2] 24.34 0.63 N.A. N.A. N.A.
DDDNet [9] 21.35 0.54 0.277 0.381 0.561

Xin et al. [13]† 18.13 0.30 0.302 0.415 0.951
Punnappurath et al. [10]† N.A. N.A. 0.194 0.264 0.243

Kim et al. [7] N.A. N.A. 0.287 0.382 0.694
Naive DP (ours) 29.72 0.83 0.019 0.050 0.092
CADS (ours) 31.20 0.87 0.018 0.046 0.087

NYUv2 dataset
DPDNet [2] 26.90 0.80 N.A. N.A. N.A.
DDDNet [9] 20.42 0.56 0.303 0.392 0.595

Xin et al. [13]† 16.70 0.37 0.302 0.412 0.579
Punnappurath et al. [10]† N.A. N.A. 0.149 0.204 0.170

Kim et al. [7] N.A. N.A. 0.306 0.386 0.489
Naive DP (ours) 29.33 0.87 0.017 0.030 0.058
CADS (ours) 31.32 0.91 0.016 0.029 0.057

Table 2. Comparison with existing DP methods. CADS offers the best AIF and disparity estimation quality on our simulated DP captures
based on FlyingThings3D scenes, and on our simulated DP captures based on the NYUv2 scenes. Red highlights best, orange highlights
second best. † indicates metrics computed over 16 samples since these methods had a slow runtime. For methods where AIF/disparity is
not predicted, metrics are marked as N.A.

it inside the DSLR lens, as done in [8]. Fig. 4 illustrates the
same. We set the focus distance of the camera to 40 cm,
and we set up toy scenes 32–53 cm away from the camera.
These imaging parameters of the setup were chosen such
that the defocus blur sizes will approximately be within 0-
40 pixel size (on both sides of the defocus).

Canon Dual-pixel RAW data capture. We capture im-
ages using the Canon camera, under the DP-RAW setting
with the lowest possible ISO setting of 100. We process the
raw .CR2 files using Adobe DNG converter to convert them
to the DNG format. We extract the combined (L+R) and left
(L) images from the DNG files using the Tiff() capabilities
in MATLAB. For simplicity we do not perform demosaick-
ing, thus we obtain RGB DP captures of size 3440x2272x3.
The 14-bit RAW data is appropriately scaled and the black-
level is subtracted to get the left, right DP images.

Scene capture details. For a given scene, we capture a
naive (no code) DP measurement, a CADS measurement,
and also a f/22 measurement to obtain the ground truth de-
blurred all-in-focus image of the scene. Furthermore, we
also capture a coarse ground truth depth map using an Intel
RealSense D415 stereo sensor (see Fig. 4). We pre-calibrate
the Intel RealSensor sensor with our Canon DSLR sensor
with the help of a 10x12 checkerboard pattern, so as to
transform the depth map into the DSLR’s frame of refer-
ence. We crop the captured DP measurements and only re-
construct the central 1696x1522x3 region. We show a few
more example results in Fig. 6.

Canon DSLR
w/ DP sensor

Intel RealSense 
Depth SensorCoded Aperture

Figure 4. Experimental setup for DSLR photography cap-
tures. The coded aperture is placed in the aperture plane inside
the Yongnuo lens.

2.4.2 PSF capture, calibration, and fine-tuning

Real-world PSF capture. To capture PSFs, we capture
pinhole images (illuminated with white light) for 21 depths
ranging from 32 cm to 53 cm. We capture these for the
no-code (open aperture) case and for the E2E learnt CADS
case. Fig. 5 illustrate the same.

Fine-tuning. To reconstruct real-world captures, we per-
form fine-tuning of a trained CADNet-RGB model (trained
on simulated FlyingThings3D scenes using simulated DP
PSFs). We first capture real-world PSFs as mentioned
above. The real-world PSFs are used to simulate DP cap-
tures based on FlyingThings3D scenes, and CADNet-RGB
model weights are fine-tuned on the new captures for 30
epochs. During fine-tuning phase, we train for a variable
amount of heteroscedastic noise [4] levels ranging from
0.7%–1.5%, along with extra data augmentations (random)



32 cm 53 cm

Figure 5. DSLR PSF captures. Showing combined (L+R) real-
world PSFs captured at different depths. (Top row) no-code case.
(Bottom row) CADS case.

on brightness, contrast, gamma, and hue. This is done to re-
move certain sim-to-real mismatches to enable better depth
and AIF reconstructions.

Calibration. In [13], the authors describe a vignetting
calibration scheme. Images of a white sheet are captured
to model the vignetting profile for left, right DP images.
Scenes are pre-processed by dividing the left, right scene
captures with the corresponding vignetting images. We fol-
low the same procedure in our case as well.

2.5. Endoscopy, Dermoscopy results

2.5.1 Experimental setup details

Endoscopy setup and capture details. We use a Karl
Storz 26003ARA Rubina rigid endoscope of 10 mm diam-
eter. A rigid endoscope consists of several relay lenses to
relay the image from the patient side to the surgeon side
(eyepiece). For making a prototype CADS endoscope, we
mount a 2.5mm coded mask in front of the Canon DSLR
lens and align its optical axis to that of the endoscope. We
focus the DSLR such that it is focussed at a point 20 mm
away from the other end of the endoscope. Fig. 8 illustrates
ours CADS endoscope prototype. We capture a 2D PSF
array 2.5 mm away from the scope, and scale it down to ob-
tain PSFs at 21 depths ranging from 2.5 mm to 20 mm. We
perform fine-tuning as outlined before but with some more
modifications – (1) we implicitly model PSF spatial vari-
ance across the FoV (see ahead for more details), (2) we
only reconstruct for negative defocus, and (3) along with
data augmentations, we add random bias and random atten-
uation to one of the channels (because the vignetting cor-
rection is not perfect). With such a setup, we are able to
capture ≤ 40 µm features over an extended depth-of-field,
as illustrated in Fig. 7.

Dermoscopy setup and capture details. We built a pro-
totype CADS dermoscope using the Pixel 4 camera, 12x
macro lens, and a 2.5 mm diameter CADS mask. We fo-
cus at the closest distance possible i.e. 45 mm. We capture
PSFs at 32 mm and scale them accordingly to obtain PSFs
at 21 depth planes from 32 mm to 76 mm. We perform

fine-tuning in the same way as outlined for the endoscopy
case. We capture DP data using an open-source Android
app https://github.com/google-research/
google-research/tree/master/dual_pixels.
Since the data obtained has rectangular-shaped pixels (2:1)
we re-size the smaller dimension accordingly and recon-
struct for a central FoV of 512x432 pixels.

2.5.2 Modelling spatially-varying PSFs

For our CADS endoscopy and dermoscopy setup, we ob-
serve that the coded DP PSFs vary over the entire field of
view (FoV), as shown in Fig. 9. This leads to improper
reconstruction results if we fine-tune CADNet with the cen-
tral PSF only. To account for this spatial variance, we cap-
ture a 2D array of PSFs across the FoV. During the fine-
tuning phase, we randomly sample one of the PSFs (out
of many) in every iteration and use its corresponding PSF
z-stack to simulate and render out the coded dual-pixel im-
ages. By doing so, the CADNet network sees all the vari-
ations in the PSF for the given system and thus can correct
for those reliably. Fig. 10 illustrates the same. For the case
in which we fine-tune only with the central PSF z-stack,
we obtain incorrect depth maps and slightly incorrect AIF
maps. Our fine-tuning using the captured PSF 2D array
gives better AIF reconstruction and much better depth re-
construction. We use the same fine-tuning procedure (using
a captured PSF 2D array) for our dermoscopy experiments.
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