
MonoNPHM: Dynamic Head Reconstruction from Monocular Videos

Supplementary Material

1. Overview

This supplementary document provides additional imple-
mentation details on our network architecture (Sec. 2.1),
training (Sec. 2.3) and tracking strategy (Sec. 2.4).

Additionally, we present more qualitative results (Sec. 3)
and discuss our ablation experiments (Sec. 3.2).

We kindly suggest the reviewers watch our supplemen-
tary video, for a temporally complete visualization of the
tracked sequences.

2. Implementation Details

In Sec. 2.1 we provide details about the individual network
components of MonoNPHM. Sec. 2.2 describes how we im-
plement a memory efficient variant of the MLP ensemble
proposed in [3].

2.1. Network Architectures

Some of mentioned details in this subsection require de-
tailed knowledge about NPHM [3].

Expression Network To represent our backward defor-
mation field Fexp we use a 6-layer MLP with a width of
400. The expression codes zexp are 100 dimensional. The
dependence on zgeo is bottlenecked by a linear projection
to 16 dimensions, as proposed in [3].

Geometry Network Our local geometry MLPs fk
geo have

4 layers and a width of 200. Out of the 65 anchors, 30 are
symmetric, meaning that the ensemble consists of 64−30 =
34 MLPs. Note, however, that the spatial input of fk

geo is
augmented with the predicted hyper-dimensions.

Appearance Network Our appearance MLPs fk
app follow

the same structure as fk
geo, but receive extracted geome-

try features hgeo(xc) as input. hgeo is a two-layer MLP
(widths 100 and 16), that maps the hidden features of the
last layers of fk

geo to 16 dimensions.

Anchor Prediction Compared to the anchor layout used
in NPHM [3], we increase the number of anchors from 39 to
65, and rearrange them, such that the anchors coincide with
the most important facial landmarks for tracking. Fig. 1
shows our anchor layout. The anchor prediction MLP A
consists of 3 linear layers and has a hidden dimension of
64.

2.2. Efficient Implementation

To account for the computational burden of the increased
number of anchors and added appearance MLPs, we prune
the computations of the local MLP ensemble.

kNN Pruning NPHM executes every MLP fk
geo for each

query point xc. Instead, we use Pytorch3D [14] to com-
pute the 8 nearest neighbors Nxc

for each query. Then, we
conceptualize the execution of local MLPs as a graph con-
volution, implement usingPytorchGeometric [2]. The graph
convolution is restricted to Nxc

(see equation 2 in the main
document). In practice, this decreases the number of MLP
executions for each query from 65 to 8 (the number of near-
est neighbors). Hence, GPU memory demand is roughly
reduced 8-fold
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Figure 1. Re-Scaling wk: We show weights wk for three different
anchors (red) among all the 65 anchors (orange). The mesh sur-
face are colored according to wk where white corresponds to a low
value and blue to a large value. The top row shows our re-scaled
weights compared to a constant scale (bottom row). Note the dis-
continuities on the bottom left, and the sharp decay on the bottom
right.

Re-Scaling wk For a given query point xc and local MLP
associated to the anchor point ak, NPHM uses weights

w∗
k(xc,ak) = exp

(−∥xc − ak∥2
2σ

)
, (1)



and normalizes them to wk in order to blend the pre-
dictions of the individual MLPs. However, when restrict-
ing the computations to the set of nearest neighbors, such a
constant-scale Gaussian weighting results in discontinuous
for points on the boundary of Voronoi cells, i.e. when the
set of nearest neighbors changes.

As demonstrated in the bottom left of Fig. 1, the influ-
ence of the highlighted anchor point exhibits a sharp bound-
ary. This effect can be mitigated by reducing σ to be signif-
icantly smaller than the size of the Voronoi cells. How-
ever, due to the non-uniform spatial arrangement of an-
chors, finding a single σ that ensures smooth boundaries
for all anchors is impossible.

Consequently, we vary

σ(xc) =
1

4
max
x∈Nxc

∥xc − x∥2 (2)

according to the set of nearest neighbors of Nxc . Doing
so ensures that w∗

k(xc,ak) decays quickly enough to zero
when approaching the boundaries of its Voronoi cell.

2.3. Training Details

2.3.1 Data Preparation

We use the 3D textured scans of the NPHM dataset [3] for
training. To this and we sample points on the surface Ssurf
and near the surface Snear, and define Sall = Ssurf ∪ Snear.
For xp ∈ Sall we precompute its normal n(xp) and color
RGB(xp). Additionally, we precompute samples (xp, xc) ∈
Scorr of corresponding points in posed and canonical space
following [12] and using the provided registered meshes in
the NPHM dataset.

2.3.2 Loss Functions

We train MonoNPHM in an end-to-end fashion, similar to
ImFace [18] which jointly trains geometry and expression
networks.

Geometry Supervision The employed losses are simi-
lar to [5], however, adopted to dynamic objects similarly
to [18]. Hence, the main losses for the geometry and ex-
pression supervision put constraints on the zero-level set
through

Llevel-set =
∑

xp∈Ssurf

∥Fgeo(Fexp(xp))∥1 (3)

and on the surface normals through

Ln =
∑

xp∈Ssurf

∥∇xp
Fgeo(Fexp(xp))− n(xp)∥2, (4)

where we omit the dependence on latent codes for brevity.
Additionally, we enforce the eikonal constraint

Leik =
∑

xp∈Sall

∥∇xpFgeo(Fexp(xp))− 1∥2. (5)

To guide Fexp during the first half of training we include a
correspondence loss

Lcorr =
∑

(xp,xc)∈Scorr

∥Fexp(xp)− xc∥1. (6)

On one side this provides direct expression supervision. On
the other side Lcorr also enforces the first 3 dimensions of
the canonical space to behave as Euclidean as possible. This
is not only desirable but also extremely important for the
landmark loss Llm to work. For the same reason, we reg-
ularize predicted hyper-dimensions ω = [Fexp(xp)]ω to be
small using

Lhyper =
∑

xp∈Sall

∥ [Fexpω(xp)]ω ∥2. (7)

In a similar fashion, we regularize predicted deformations
to be small

Ldef =
∑

xp∈Ssurf

∥Fexp(xp)− xp∥2. (8)

Finally, we include the same regularization terms as [3], i.e.
we constrain the norm of zgeo and zexp and apply a sym-
metry loss on the symmetric parts of zgeo.

Anchor Supervision Anchor positions are directly super-
vised using

LA = ∥agt −A(zgeo)∥F (9)

where the ground truth anchor positions agt are extracted
from the registered meshes in FLAME [9] topology, as pro-
vided by the NPHM dataset. Therefore, the anchors are su-
pervised to follow the Euclidean coordinate system of the
FLAME model. While this seems obvious, we note that
without the necessary precautions imposed by Lcorr, Ldef,
and Lhyper, our canonical space becomes non-euclidean,
similarly to [8, 11, 20].

Appearance Supervision The appearance codes zapp
and network Fapp are jointly optimized alongside the ge-
ometry, by including

Lapp =
∑

xp∈Sall

∥Fapp(hgeo(Fexp(xp))−RGB(xp)∥1 (10)

into our training. Similarly as before, we also regularize
the norm of zapp. We do not include a perceptual loss dur-
ing training, as done in [10, 17], since we are focused on
geometry reconstruction via inverse rendering, instead of
photorealistic appearance.



2.3.3 Training Strategy

Using the above-mentioned losses, we train all networks
and latent codes jointly in an auto-decoder fashion [13].
We use the Adam optimizer [7], and periodically divide
the learning rates by half every 500 epochs, for a total of
2500 epochs and use a batch size of 64. We start with
lrnetworks = 0.0005, lrlat-can = 0.002 and lrlat-exp = 0.01,
for the network parameters, latent codes for canonical space
and latent expression codes, respectively.

2.4. Tracking Details

We perform iterative root finding using 5 random samples
normally distributed around the canonical anchor ak of in-
terest, as we experience similar convergence issues to [1]
that are dependent on the initial position.

Since the inside of the mouth is subject to extreme shad-
ows, far beyond what our simple lighting assumptions can
explain, we use the predicted facial segmentation masks
[19] to down-weigh the color loss LRGB by a factor of 25
for that region.

Furthermore, we employ several mechanisms to encour-
age a coarse-to-fine optimization. First, we decay all learn-
ing rates of the employed Adam optimizer periodically
throughout the optimization. The learning rate for the head
pose and spherical harmonics parameters ζ start larger and
decay faster compared to the learning rate of the latent
codes. Second, we increase the inverse standard deviation
from the NeuS [15] volume rendering formulation from 0.3
to 0.8. Therefore, the rendering densities are initially dis-
tributed widely around the surface, allowing for a large vol-
ume that receives gradients in the coarser stages of opti-
mization. Third, the influence of the landmark loss Llm is
strongly decayed throughout the optimization progress. Ini-
tial epochs strongly rely on landmark guidance, while later
ones are barely affected by it anymore. Additionally, we
weigh the landmarks of the eyes, mouth and chin 100 more
then the remaining ones.

3. Additional Qualitative Results
3.1. Additional Comparisons

Next to the results in the main paper and our supplementary
video, we show additional qualitative comparisons against
our baselines in Fig. 2. Note that each row shows a frame
from a different sequence, which are reconstructed sepa-
rately.

Note that we due not show additional results for NHA [4]
and HeadNeRF [6], since both methods do not have accu-
rate geometry as their main focus.

3.2. Ablations

While our main document only reported quantitative results
of our ablation experiments, due to space reasons, Fig. 3

and our supplementary video show qualitative results. In the
following we highlight some key insights from our ablation
experiments:

Effect of Llm Generally, our tracking performs well even
when the landmark loss is disabled. However, some ex-
treme expressions are completely missed without it, see the
second column in Fig. 3.
Additionally, utilizing a landmark detector trained on large
image collections of in-the-wild images provides some ro-
bustness against lighting and shadow effects.

Volume Rendering vs. Sphere Tracing Utilizing sphere
tracing [16], instead of a volumetric formulation [15], for
differentiable SDF-based rendering results in reconstruc-
tions that are perceptively dissimilar to the subject. Ad-
ditionally, we note that the sphere tracing sometimes gets
stuck in local minima, where it is not able to remove hair
geometry in front of the forehead, see columns four and
five.

Spherical Harmonics Since our model is trained on 3D
scans, with albedo-like texture, accounting for lighting ef-
fects is important. Removing the spherical harmonics term,
makes the task slightly ill-posed and generally results in
worse reconstruction quality.

Deformation Formulation We ablate our deformation
module, consisting of backward deformations and hyper
dimensions, against the forward deformation utilized in
NPHM [3]. To this end we extend NPHM’s canonical space
using our proposed approach to include color prediction.
We denote this model as NPHMapp. Due to its invert de-
formation direction iterative-root-finding is required during
rendering and not for the landmark loss. Another difference
is that it needs to be trained in two stages according to [3].
Otherwise, the same losses and hyperparamters are used for
tracking.

Fig. 3 indicates that the forward deformation module
mainly has problems in the mouth region, e.g. with folded
lips.

Anchor Layout Additionally, we ablate the proposed an-
chor layout against the version used in NPHM, which uses
39 anchors instead of our proposed 65 anchors. This mainly
results in a slightly less dense landmark loss, and slightly
reduced capacity, due to a lower number of local MLPs.

Color Communication Conditioning the color MLP
Fapp directly on canonical spatial coordinates xc instead
of geometry features hgeo(xc), gives the model extra free-
dom since both outputs are less correlated. For example in



column 3 this results in a failure to separate the hair and
cheek. Additionally, such a communication bottleneck was
found to be beneficial for disentangling the geometry and
appearance latent spaces [17].

Local vs. Global MLPs Our MLPs modeling the SDF
and texture field follow the local structure proposed in [3],
i.e. we use an ensemble of local MLPs, each centered
around its specific facial anchor points. Additionally, sym-
metric face regions are represented using the same MLP, but
with mirrored coordinates. Our main motivation for choos-
ing such an architecture are the facial anchors, which we
exploit to formulate our landmark loss. We realized that
it is also possible to use the same landmark loss while us-
ing global MLPs for both SDF and texture field. To this
end, it is necessary to add the anchor prediction network A
to the architecture, although the predicted anchors are not
used anywhere else in that architecture. We find that train-
ing such a model is still capable of successfully associat-
ing the geometry code zgeo with plausible facial anchors.
Nevertheless, the local MLP ensemble still learns a more
detailed latent representation, which, for example, shows in
the slightly blurry eye reconstructions in columns three and
five.
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Figure 2. Tracking Comparison: We show additional qualitative results of the monocular 3D reconstruction task. The error maps show
the color-coded point-to-mesh distance from the back-projected Kinect depth to the reconstruction.
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Figure 3. Ablation Results: Qualitative comparison of our ablation experiments, as quantitatively reported in Table 2 in the main docu-
ment. Rows and columns are transposed compared to our other result figures. The error maps show the color-coded point-to-mesh distance
from the back-projected Kinect depth to the reconstruction. See Sec. 3.2 for a description of our findings.
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