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Supplementary Material

This appendix contains three sections organized as fol-

lows. In Sec. 6 we discuss our proposed multimodal clas-

sifier free guidance, proving Eq. (4) of the main paper and

providing qualitative results for its usage. In Sec. 7, we re-

port the implementation details of our unconditional model

along with details about the baselines adopted in the paper.

Lastly, in Sec. 8 we show additional qualitative results and

applications of our framework. Please refer to our arXiv

version1 for high-quality images.

6. Multimodal Classifier Free Guidance

6.1. Proof

Let us represent p(z|c) as the distribution we want to learn.

In our case, the conditioning c = (S, F, y), while z rep-

resents the input image x in latent space. A well-trained

diffusion model learns to estimate ∇zt log p(zt|c). Using

Bayes’ rule and taking the logarithm, we obtain:

log p(zt|c) = log p(c|zt) + log p(zt)− log p(c) (6)

In our setting of multimodal conditioning, we want to con-

trol the final image using the appearance from the reference

image F and the text prompt y independently. Multimodal

inference would be particularly useful when the information

in y is disjoint from (S, F ), and we need to capture it in the

final image. Following this assumption, we obtain:

log p(c) = log p(S, F, y)

= log p(S, F ) + log p(y)
(7)

Similarly, expanding log p(c|zt) and using Eq. (7):

log p(c|zt) = log p(S, F, y|zt)

= log p(S, F |zt) + log p(y|zt)
(8)

Plugging the Eq. (7)-Eq. (8) in Eq. (6), and applying Bayes’

rule:

log p(zt|S, F, y) = log p(S, F |zt) + log p(y|zt)

+ log p(zt)− log p(S, F, y)

= log p(S, F |zt) + log p(y|zt)

+ log p(zt)− log p(S, F )− log p(y)

= log p(zt|S, F ) + log p(zt|y)− log p(zt)
(9)

1https://arxiv.org/abs/2303.17546

Taking gradient w.r.t. ∇zt we can get

∇zt log p(zt|S, F, y) = ∇zt log p(zt|S, F )

+ ∇zt log p(zt|y)

−∇zt log p(zt)

(10)

Next, we apply Bayes’ rule to the first term:

∇zt log p(zt|S, F ) = ∇zt log p(F |S, zt)

+∇zt log p(S|zt)

+∇zt log p(zt)

−
!
!
!
!

!
!
!"

0
∇zt log p(S, F )

(11)

and the second term:

∇zt log p(zt|y) = ∇zt log p(y|zt)

+∇zt log p(zt)

−
!

!
!

!
!!"

0
∇zt log p(y)

(12)

Pluggin Eq. (11)-Eq. (12) in Eq. (10) we obtain:

∇zt log p(zt|S, F, y) = ∇zt log p(F |S, zt)

+ ∇zt log p(S|zt)

+ ∇zt log p(y|zt)

+ ∇zt log p(zt)

(13)

We can use the concept of classifier-free-guidance [16] to

approximate the above equation using a single model which

has been trained by dropping the conditions during training

and get the final sampling equation Eq. (4):

ε̃θ(zt, S, F, y) = εθ(zt,φ,φ,φ)

+ sS · (εθ (zt, S,φ,φ))− εθ (zt,φ,φ,φ))

+ sF · (εθ (zt, S, F,φ)− εθ (zt, S,φ,φ))

+ sy · (εθ (zt,φ,φ, y)− εθ(zt,φ,φ,φ))

(14)

6.2. Ablation on CFG control parameters

The multimodal classifier free guidance has three con-

trol parameters namely sS , sF , sy. In practice, the values

sS , sF , sy can be understood as the guidance strengths to
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control how the final image is affected by the structure, ref-

erence image, and the given text prompt. When using it to

edit real-world images it is crucial to understand how they

change the output image when varied together. In this sec-

tion, we study the effect of (a) varying structure guidance

sS and reference image guidance sF (b) varying text prompt

guidance sy and reference image guidance sF .

Structure (ss) and Appearance (sF ). We explain the im-

portance of parameters by choosing a reference image that

is completely different from the underlying structure in the

input image. The results are shown in Fig. 7. We can ob-

serve that as we increase sF the model forcefully imposes

the reference image appearance on the object being edited

and the object starts losing its structural integrity. We can

get back the structural integrity when increasing sS as well.

Notice, in the second row, when sF = 4 and sS = 2 we

cannot see any parts of the car such as the wheel, headlight,

windshield, etc. When we start increasing sS the subpart of

the car starts appearing the edited region starts looking more

like a car. However, when we increase sF too much as in

the last row, even after increasing sS does not help much. In

general, it is good practice to keep sS > sF when editing

real images. Further, we can adjust sF how closely we want

the edited output to follow the reference appearance.

Text Prompt (sy) and Appearance (sF ). We analyze the

effect of two crucial guidance parameters that help us in

controlling and editing images in a multimodal manner. The

results are shown in Fig. 8. We can see that it is crucial to

keep sy > sF to see the effects of the text prompt on the

output image. Further, we can see that the model is more

sensitive to the sF parameter compared to sy. Even if we

increase sF slightly we can see diminishing effects of the

prompt on the edited image. In general, when editing images

in a multimodal manner it is a good practice to keep sy > sF ,

sF should have a low value in an absolute sense. Keeping

these constraints we can vary the parameters to adjust the

final output as needed.

7. Implementation Details

7.1. PAIR Diffusion

Unconditional Diffusion Model. In this section, we provide

additional details for implementing PAIR Diffusion frame-

work on unconditional diffusion models. We used LDM [38]

as our base architecture and trained on LSUN Church, Bed-

room, and CelebA-HQ datasets. To extract the structure

information, we apply SeMask-L [19] with Mask2former [7]

trained on ADE20K [61], and compute the segmentation

mask for LSUN Church and Bedroom datasets [56]. In

CelebA-HQ, ground truth segmentation masks are available.

Given the simplicity of the architecture and the training

datasets, we found that simply using the features extracted

by the VGG network (GV l1 , see Sec. 3) to be sufficient in

this case to achieve various editing capabilities. To condition

the model on this information, we simply concatenate GV l1

to the noisy latent zt along the channels dimension. We

increase the number of channels of the first convolutional

layer of the UNet from Cin to Cin + C + 1, with C the

number of channels in GV l1 , and keep the rest of the ar-

chitecture as in [38]. For all three datasets namely, LSUN

Church, Bedroom, and CelebA-HQ we start with the pre-

trained weights provided by LDM [38] and finetune with

the same hyperparameters mentioned in the paper [38]. The

number of steps, learning rate, and batch size are reported

in Tab. 4. We train our models using A100 GPUs. During

training, we randomly dropped structure and appearance

conditioning with a probability of 10%. At inference time,

we adapt Eq. (4) for sampling from the model by setting

sy = 0 and use classifier-free guidance style sampling using

the DDIM algorithm [45] with 250 steps.

Foundational Diffusion Model. We use Stable Diffusion

(SD) [38] as our base architecture and ControlNet [59] to

efficiently condition SD. We use COCO [4] dataset for the

experiments, which contains panoptic segmentation masks

and image captions. In vanilla ControlNet, the condition-

ing signal is passed through a zero convolution network

and added to the input noise after being passed through the

first encoder block of the control module. Similarly, we

utilize GV l1 in the same fashion, employing it as input to the

control module as in the standard ControlNet approach. Fur-

thermore, we modulate the features in the first encoder block

of the control module using GDl2 and in the second encoder

block using GDl3 by adding them to the respective features

after cross-attention blocks. Before adding GDl2 , GDl3 we

pass them through two linear layers to match the dimen-

sion of the features of the network. We train the network as

described in ControlNet [59], training the control module

and the linear layers while keeping all the other parameters

frozen. We perform a grid search to identify the layers of the

VGG and DINOv2 that achieve the best results. We found

l1 = 1, l2 = 6, l3 = 18 to yield the best results. During

training, we randomly dropped structure, appearance, and

text conditioning with a probability of 10%. Our model is

trained across 4 A100 machines with 8 GPUs requiring 3

days to train the model. The number of steps, learning rate,

and batch size are reported in Tab. 4. At inference time, we

apply Eq. (4) for sampling and use classifier-free guidance

style sampling using the DDIM algorithm [45] with 20 steps.

7.2. Baselines

Quantitative Experiments. We provide additional details

about implementation and evaluation procedures for the re-

sults shown in Sec. 4.2 of the main paper. We evaluate

the models on the task of in-domain appearance manipula-

tion. We first describe the data-collection procedure. We

use 5000 images from the validation set of LSUN Bedroom,
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Figure 7. The figure shows the affect of sF and sS parameter in multimodal classifier free guidance Eq. 4 when they are varied. We can see

that as we increase sF the output forcefully imposes the appearance from the reference image and the car starts losing the structure details

that were helping to make it look like a car. In order to maintain the structural integrity of the car we need to increase sS .
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Figure 8. The figure shows the effect of sF and sT parameter in multimodal classifier free guidance Eq. 4 when they are varied. sF controls

the effect of the reference image and sy control the effect of the prompt. We can see that the output is highly sensitive to sF . Even if we

increase sF slightly the effect of the prompt starts disappearing. When we want to use both reference images and prompts to affect the final

image it is best to keep sy > sF and sF should have a low value in an absolute sense.
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Figure 9. Object level appearance variations are shown for models trained with different appearance representations. It can be observed that

MDINO faces difficulty in preserving the color when generating variations. The sky is a bit darker than the input image whereas, in the case

of the couch, the shade of orange color does not match the input image. We can see that MVGG is able to preserve the color however it can

have artifacts even for slightly complex objects. In the case of the couch, we can see some white artifacts that might have come from the

white bottom of the couch in the input image. MVGG have a poor understanding of objects compared to MDINO. Only the full model which

uses both captures the visual aspects of the object faithfully.



Base Model Dataset LR Batch Size Iterations GPU Days

LDM Bedroom 9.6e-5 48 750k 24

LDM Churches 1.0e-5 96 350k 12

LDM CelebA-HQ 9.6e-5 24 120k 1

SD + ControlNet COCO 1.5e-5 128 86k 96

Table 4. Hyperparameters for PAIR diffusion when used with LDM [38] and Stable Diffusion (SD) with ControlNet [59].

and choose the bed as the object to edit. For each image,

we randomly select a patch within the bed, and use a patch

extracted in the same way from another image as the driver

for the edit. Next, we describe the baselines. Copy-Paste:

the target patch is copied and pasted in the target region of

the input image, resizing the patch to fit the target region.

Inpainting, we use the model pretrained on LSUN Bedroom

Dataset by [38], and use it to inpaint the edit region. To

do that, we use a masked sampling technique, as done in

the inpainting task in Rombach et al. [38]. CP+Denoise,

we start from the results of copy-paste and apply DDIM

Inversion to map the image to the diffusion noise space [45].

Subsequently, we apply LDM to denoise the image to the

final result. Lastly, we compare our method with E2EVE [3].

We use the original pre-trained weights shared by the authors

and use their model to perform the edit. Next, we detail the

metrics calculation pipeline. We compute naturalness by

measuring the FID between the edited images and the origi-

nal images from the whole dataset. We estimate the locality,

by measuring the L1 loss between the original image and the

edited image outside the edited region (i.e. the region that

should not change). Finally, the faithfulness is measured by

the SSIM between the driver image and the edited region in

the edited image.

Qualitative Experiments. We run Prompt-Free-

Diffusion [53] following the description in Sec. 4.5

of the paper. For implementation, we follow the author’s

instructions at the following GitHub issue. Specifically, we

crop the input image around the object being edited and the

reference image around the selected object. We feed the two

crops to the SeeCoder and use the segmentation ControlNet

with the segmentation map of the cropped input image as

the conditioning signal. We then get the edited image by

cutting the region of interest in the output image and pasting

it in the input image. Regarding Paint-By-Example [54], we

crop the reference image around the selected object and

follow the original inference procedure afterward.

8. Qualitative Results

8.1. Stable Diffusion Results

In this section, we show additional results for PAIR Diffu-

sion when coupled with a foundational diffusion model like

Stable Diffusion [38]. In Fig. 11, we perform appearance

manipulation in the wild, showing realistic edits in different

scenarios. In Fig. 12, we provide additional results for the

task of adding a new object to a given scene. Lastly, we

showcase another capability of our model, i.e. producing

variations of a given object. Specifically, we sample dif-

ferent initial latent codes zi ∼ N (0, 1), while fixing the

structure and appearance representation. We report the re-

sults in Fig. 13.

8.2. Unconditional PAIR Diffusion

We start by providing additional results for the task of ap-

pearance control. In Fig. 10 (a), we can notice that our

method can easily transfer the appearance of a church from

a completely different structure in the reference image to the

structure of the church in the input image. At the same time,

we can copy relatively homogeneous regions like the sky,

transferring the color accurately, as well as more textured

objects such as the trees. In Fig. 10 (b), it is interesting to

note that, when we change the style of the floor, the model

can appropriately place the reflections hence realistically

harmonizing the edit with the rest of the scene. Similar ob-

servations can be made when we edit the wall. Lastly, in

Fig. 10 (c) we show results on faces. We can observe that

our method accurately transfers the appearance from the ref-

erence image, modifying the skin, hair, and eyebrows of the

input. We notice that all our edits do not alter the identity of

the person in the input image, which is a desirable property

when editing faces.

Next, we provide an additional qualitative comparison for

the task of appearance control with the baselines detailed in

Sec. 7. In Fig. 14, we can observe that our method seam-

lessly transfers the appearance from the reference image

to the input image, while maintaining the edit to the tar-

geted region. Moreover, we show the qualitative comparison

with SEAN [62] in Fig. 15. We can see that our method

gives better editing results and we also allow to control the

strength of the edit. In Fig. 16, we showcase more nuanced

appearance editing results instead of simply swapping the

appearance of input and reference images (i.e. f ′

i = fR
i ) by

linearly combining the two. We exploit the flexibility of our

formulation by setting a0 = λ, a1 = 1− λ, with λ ∈ [0, 1],
i.e. interpolating input and reference images. We can notice

how the appearance of the edited region smoothly transitions

from the original appearance to the reference, providing an

https://github.com/SHI-Labs/Prompt-Free-Diffusion/issues/3#issuecomment-1573091747


Input Building Sky Tree

(a)
Input Bed Wall Floor

(b)
Input Skin Hair Eyebrows

(c)
Figure 10. Qualitative results of Appearance Manipulation using UC-PAIR diffusion model. Reference images are shown in the bottom

right, while the text on top indicates the object targeted by the editing operation.

additional level of control for the end user.

Lastly, we present a more challenging editing scenario us-

ing reference images that contain no semantics (e.g. abstract

paintings) and use it to perform both localized and global

editing in Fig. 17.



Input Reference Appearance PAIR Diffusion

Figure 11. Appearance editing in the wild.



Input Reference Appearance PAIR Diffusion

Figure 12. Add objects to the scene.



Input Variations

Figure 13. Object variations. We obtain variations in the appearance of the objects when generating images with different seed. This can be

attributed to the lossy procedure used to obtain appearance vectors.



Input Reference CP Inpaint CP+DDIM E2EVE Our

Figure 14. Visual results for in-domain localized image editing. We edit the input image, using as a driver the reference image, targeting the

red-boxed area. With PAIR Diffusion we can perform realistic edits in challenging scenarios. For example, in the first row, we can use the

entire bed as a driver and edit only a patch of the input image. On the contrary, in the last row, we use a small patch as a driver and target the

whole bed of the input image for the edit. In both cases, our method outputs realistic edited images. Moreover, due to the masked DDIM

technique, we introduce almost no distortion in the area outside the red box (i.e. the one that should not change). We show results for all the

baselines. Note that unlike other results in the paper which uses edit regions specified by the user or generated using a segmentation model,

here we define edit regions using predefined boxes.
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Figure 15. Qualitative comparison against SEAN [62] for editing the appearance of (a) Hair (b) Skin. Unlike SEAN [62] we can also control

the edit strength using our proposed classifier free guidance Eq. (4)
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Figure 16. We can control the strength of appearance and interpolate between the reference and input appearances. We set appearance as

f ′ = (1− λ)fi + λfR
j where fi is the input appearance and fR

j is the reference appearance and vary λ from 0 to 1.



Input Wall Bed

Input Church Sky

(a)

(b)

Figure 17. Visual results for (a) local image editing, (b) global image appearance manipulation.
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