
CommonCanvas: Open Diffusion Models Trained on Creative-Commons Images

Supplementary Material

A. Details on Data Scarcity Analysis

A.1. Hypothesis: Diffusion models are too small

A back-of-the-envelope calculation provides some insight
on why this is the case. Consider a training dataset consist-
ing of N images with resolution H × W and c channels.
To completely memorize the training data, the model must
be capable of storing c × H × W × N numbers. Given a
number of trainable parameters Np, it is natural to assume
that on average each parameter is capable of storing roughly
enough information to reconstruct a single number from the
training dataset. Under this assumption, complete memo-
rization is only possible if the size of the training dataset is
at or below a critical size Nc (N ≤ Nc) with Nc given by
Nc =

Np

cHW . Note that this critical size assumes the data
cannot be further compressed, which is obviously not the
case for natural images. However, SD2 and SDXL are la-
tent diffusion models, which first use a pretrained encoder
to compress images by a factor of 8 in both H and W , and
so when we train LDMS like SD2 and SDXL, we are train-
ing on data that has been significantly compressed already.

In our experiments, c = 4 and H = W = 32, cor-
responding to 256 × 256 resolution RGB images in the
SD2 and SDXL latent space. The SD2 UNet has Np =
866 × 106 trainable parameters, and SDXL’s UNet has
Np = 2567 × 106. So we calculate Nc ≈ 0.2 × 106

for SD2 and Nc ≈ 0.6 × 106 for CommonCanvas-Large;
both of these numbers are several orders of magnitude be-
low the size of our YFCC derived datasets, and so even with
significant additional data compression we expect that our
CommonCatalog datasets should be sufficient to train both
SD2 and SDXL. Additionally, this argument predicts that
we should only begin to see significant overfitting in these
models for datasets of size N ∼ 106. These estimates are
resolution dependent, and as image resolution increases we
expect that Nc will decrease as more information is pro-
vided per image.

A.2. Increasing model capacity

We also train a variant of SD2 with more trainable param-
eters, taking the UNet from SDXL. We refer to this model
as CommonCanvas-LNC. We adapt the SDXL UNet archi-
tecture to SD2 by changing the cross-attention dimension-
ality to match that of the SD2 text encoder hidden state di-
mensionality (1024 for SD2 vs. 2048 for SDXL). SDXL
also retrains the VAE component in their model, and we use
this improved performance VAE as well. Except for these
changes, the architecture is identical to that of SD2.

B. Training Dataset Details

B.1. LAION-2B

The fact that LAION is not a stable benchmark can lead
to multiple reproducability and security issues. Data poi-
soning attacks would be difficult to detect at the scale of 2
billion parameters. While this could be mitigated by using
hash values of the images, then any time the a site decide
to re-encode the image, those images would now need to
be excluded from the dataset. Furthermore, targeted data
poisoning attacks for diffusion models are no longer just
academic conjecture. Last year after the release of Stable
Diffusion, a protest was launched on ArtStation that had
uses upload images that said “NoAI” to taint future training
data for generative models after artists felt as though their
work had been unfairly used to train the models. With the
high degree of link rot, targeted attacks are fairly easy. Fur-
thermore, reproduction of the experiments becomes virtu-
ally impossible. This means any benchmarks that use copies
of LAION as ground truth are are likely using differing sub-
sets of the full dataset.

B.1.1 Sourcing Creative-Commons images

Table 1. CC licenses in YFCC100M. ND means derivative works
are not licensed or the license doesn’t allow the user to create
derivative works. NC means images cannot be used in commer-
cial contexts. CommonCatalog-C only contains data from the bot-
tom two (yellow) rows, reflecting images licensed for commercial
contexts (i.e., roughly 25 million images). CommonCatalog-NC
contains CommonCatalog-C, and additionally includes the middle
two (blue) rows, reflecting images licensed for non-commercial
purposes. We do not include the roughly 30 million images in the
top two (pink) rows in CommonCatalog, as they are non-derivative
licenses. We do not train on these images. We do, however, pro-
duce BLIP-2 captions for them and release those captions as an
evaluation set.

CC License # Images % Captioned

CC-BY-NC-ND-2.0 25,790,117 33.52%

CC-BY-ND-2.0 4,827,970 30.23%

CC-BY-NC-2.0 12,468,229 31.39%

CC-BY-NC-SA-2.0 28,314,685 31.57%

CC-BY-SA 2.0 9,270,079 34.05%

CC-BY 2.0 16,962,338 28.96%

B.1.2 Release and documentation

C. YFCC Example Images

Table 2. Randomly sampled images from the YFCC [68] training
set. Our synthetic BLIP2 captions are also provided below.

a person riding a
bike on a dirt

road

a paintings on the
wall

an orange and
blue race car

driving on a track

Model Architecture
We follow the model architecture and training recipe of

Stable Diffusion 2 as closely as we can to best reproduce the
model for CC-Small. The model has an identical number
of params and structure as the original model. In fact, we
can even load SD2’s model weights into our framework due
to the identical architecture and naming scheme. We are
able to achieve virtually identical performance with SD2 in
a much shorter training time with less data. We use the
same VAE, tokenizers, and UNet archicture as SD2 except
for reducing the precision of the normalization layers.

Our CC-Large model takes SD2’s model and replaces
the UNet with the SDXL architecture [49]. Like CC-Small,
we also replace the normalization layers with their low-
precision version. The replacement of all the normaliza-
tion layers is handled automatically by MosaicML’s Com-
poser library [45]. We perform all dataloading through Mo-
saicML’s streaming library [46].

D. Details on Efficiency Optimizations
In this section we provide additional details on the optimiza-
tions we implemented to achieve SD2 training speedups.
We also report the approximate cost of training our imple-
mentation of SD2 on various hardware configurations in Ta-
ble 5.

Flash Attention. Cross attention operations are a very ex-
pensive part of training that occurs in dozens of layers in
diffusion model UNets [53]. Flash Attention is an efficient
implementation that is optimized to work well with reduced
precision and GPU hardware [13], which was implemented
using the XFormers library [36], allowing us to save com-
pute and memory usage.

Precomputing latents. Each forward pass of SD2 requires
computing a latent representation of the input image, as well
as transforming the caption into a text embedding. Instead
of computing the latents for each example during training,
we can precompute latents for the entire dataset, amortizing

the cost. Doing so speeds up training of the model, espe-
cially at lower resolutions, in exchange for a one-time fixed
cost of precomputing all the latents over 1 epoch.

Reduced-precision GroupNorm and LayerNorm. Most
layers in SD2 are implemented in float16 precision, but
GroupNorm and LayerNorm are implemented in float32,
in part because it was assumed to be necessary for training
stability. The resulting, frequent upcasting causes a major
bottleneck in training speed. Recent work shows that it is
safe to implement LayerNorm using float16 precision [50],
and we found the same to be true of GroupNorm. We thus
cast all GroupNorm and LayerNorm operators to float16
and are able to further reduce total memory consumption
and accelerate training.

Fully-Sharded Data Parallelism (FSDP). FSDP is a vari-
ant of data-parallel training that shards the models parame-
ters, gradients and optimizer state across multiple devices.
When training data batches do not fit into memory, we
do several forward and backward passes on smaller micro-
batches, followed by a single gradient update. At GPU
scale, there may only be a single microbatch, so the time
for the gradient update can become a significant bottleneck.
In standard data distributed training, each GPU communi-
cates all its gradients to every other GPU, and then each
GPU updates its local copy of the model. Instead, we use
a different paradigm inspired by [74] where each GPU only
gets the gradients and updates the weights for a small part
of the model before sending the updated weights for that
part of the model to all of the other GPUs. By dividing
the update step across all the GPUs, we can ensure that
the amount of work per GPU decreases as we increase the
number of GPUs, helping us achieve linear scaling. To
tackle this problem, we use PyTorch’s experimental sup-
port for Fully Sharded Data Parallelism (FSDP), specifi-
cally, FSDP’s SHARD GRAD OP mode.

Scheduled Exponential Moving Average (EMA). SD2
uses EMA, which maintains an exponential moving average
of the weights at every gradient update for the entire training
period. This can be slow due to the memory operations re-
quired to read and write all the weights at every step. Since
the old weights are decayed by a factor of 0.9999 at every
batch, the early iterations of training only contribute mini-
mally to the final average. We decide to only apply EMA
for the final 50K steps (about 3.5% of the training period),
and are able to avoid adding overhead and still achieve a
nearly equivalent EMA model.

E. Telephoning
We dub our solution for handling the lack of captions in
CC images as telephoning, a type of transfer learning (Fig-
ure 3). Telephoning assumes the existence of a large la-
beled dataset D1 = {(x(i), y(i))}ni=1, consisting of pairs

Table 3. Top 10 highest frequency captions in the YFCC dataset. The most common captions are not user generated and are not very
descriptive of the corresponding image.

YFCC Original Caption Count
OLYMPUS+DIGITAL+CAMERA 184889
SONY+DSC 123128
Exif JPEG PICTURE 104480
Barclays+Center+Arena%0AAtlantic+Yards%0A6th+and+Atlantic+A 68832
Olympus+digital+camera 54805
Effortlessly+uploaded+by Eye-Fi 48388
. 43227
-+Camera+phone+upload+powered+by ShoZu 38856
Sony+dsc 32709
Photo+by @Kmeron —Facebook page is this way— 23754

Table 4. Number of usable captions from OpenAI’s YFCC14M
dataset [51]. This table is actually a subset from 1 for which either
the user description or image title were deemed usable. These
figures provide an estimate on how many images in each category
are actually potentially usable as captions.

License Name count
CC-BY 2.0 2448002
CC-BY-ND 2.0 682273
CC-BY-NC 2.0 1925854
CC-BY-NC-ND 2.0 4058817
CC-BY-NC-SA 2.0 4146113
CC-BY-SA 2.0 1568336

of high-dimensional x(i) (e.g., images, audio) that map to
a compact, structured label y(i) (e.g., caption, audio tran-
script). Telephoning trains a forward model q(y|x) on D1

to learn the mapping of y given x via maximum likeli-
hood learning maxq∈Q

∑n
i=1 log q(y

(i)|x(i)). It then uses
q as training signal for a reverse model p(x|y) trained
on a separate dataset D2 = {x(i)}mi=1 by maximizing∑m

i=1 Ey∼q(y|x(i))[log p(x
(i)|y(i))], the likelihood of the

data D2 and the predicted label y under q. This forms a
type of knowledge transfer from the forward labeling task
defined by D1 to the reverse task of inverting x from y on a
separate D2.

While telephoning can be viewed as a type of synthetic
labeling, it becomes particularly interesting when x is a type
of protected modality (e.g., a copyrighted image), while y
is a compact representation of x that does not encode sensi-
tive aspects of y (e.g., a generic caption). Effectively, tele-
phoning performs a type of “lossy compression” or “distil-
lation” from a high-dimensional or information-rich x (e.g.,
an image of Snoopy) to a low-dimensional or information-
poor y that loses the sensitive content in x (e.g., the visual
characteristics of Snoopy). Because this compression step
is “lossy”, a reconstruction x′ of x from p(x|y) via y of-

ten does not remotely resemble the original input, just like
in a game of telephone [43]. We derive the term telephon-
ing from the above intuition, and employ it as useful short-
hand to denote instances of transfer learning that solve data-
scarcity problems in multimodal generative modeling.

Telephoning for text-to-image modeling. In this work,
we apply telephoning to the image and text domains, where
CC images are the high-dimensional inputs x, and we use
a pre-trained BLIP-2 model [39] for “lossy compression”
to short-text captions y (Figure 3a). Together, these CC-
image-caption pairs comprise the CommonCatalog dataset,
which we use to train our CommonCanvas T2I models (Fig-
ure 3b). Even though BLIP-2 was pre-trained on LAION-
400M [58], CommonCatalog and CommonCanvas never
have direct access to LAION-400M or, importantly, any-
thing that is similar to the images that BLIP-2 was trained
on. Instead, we only have access to the mapping in the
model, which, given an image input, produces lossy out-
put text that inherently does not literally resemble its image
counterpart (Figure 3c).2

2We draw on the example of Snoopy from [55]. Figure 3’s Snoopy is
CC-licensed [60].

http://www.eye.fi
http://www.shozu.com/?utm_source=upload&utm_medium=graphic&utm_campaign=upload_graphic
http://twitter.com/Kmeron
http://www.facebook.com/musicfromthepit

Prompt SD2 CommonCanvas-SC CommonCanvas-SNC CommonCanvas-LNC

a 3D CAD model of an
airplane

a bear and a fox in the
forest

a klein bottle

a partially cut birthday
cake with pink and blue

frosting

two hummingbirds and a
squirrel in a bird bath

Figure 13. Additional qualitative examples comparing SD2 to our model trained on the commerical split (CommonCanvas-SC), non-
commerical split (CommonCanvas-SNC), and the larger UNet model trained on the non-commercial (CommonCanvas-LNC).

Figure 14. Additional qualitative examples of our CommonCanvas models.

Input for BLIP2 BLIP2 Caption SD2 CommonCanvas-SNC CommonCanvas-SC

an image of elsa from
frozen

pikachu pikachu
pikachu pikachu
pikachu pikachu
pikachu pikachu
pikachu pikachu

three characters dressed
like bears, standing in

the forest

Figure 15. Additional qualitative examples comparing our CommonCanvas models to SD2, given synthetic BLIP2 captions as prompts.
While not perfect, our models are better at avoiding generating potentially problematic data.

Table 5. Performance (throughput) and approximate cost of training SD2 UNet with our optimizations. Depending on the number of GPUs
used, the cost to train the same models without these optimizations range from $90,000-$140,000

Number of A100s 256x256 (img/s) 512x512 (img/s) 512x512 with EMA (img/s) Days to Train Cost ($)
8 1100 290 290 101.04 $38,800.00

16 2180 585 580 50.29 $38,630.00
32 4080 1195 1160 25.01 $38,420.00
64 8530 2340 2220 12.63 $38,800.00

128 11600 4590 3927 6.79 $41,710.00

Figure 16. MS COCO metrics over training duration for various dataset sizes. We investigate how reducing the size of the training dataset
affects training dynamics, and find that performance is largely unchanged until dropping below 10 million samples. We show that the FID
of the eval set remains stable as training progresses. However, reducing the number of samples in our training dataset to 1 million leads to
divergence. This finding suggests that only 10 million to 1 million synthetic image caption pairs are needed for good performance on MS
COCO.

	. Details on Data Scarcity Analysis
	. Hypothesis: Diffusion models are too small
	. Increasing model capacity

	. Training Dataset Details
	. LAION-2B
	Sourcing Creative-Commons images
	Release and documentation

	. YFCC Example Images
	. Details on Efficiency Optimizations
	. Telephoning

