CPR: Retrieval Augmented Generation for Copyright Protection

Supplementary Material

A. Proofs of the Propositions and Lemmas
A.1. Proposition 1

Proof. of Proposition 1.
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A.2. Proposition 2

Proof. of Proposition 2. Let sg, (z¢,t,¢) = so,+n0, (2t,1,c) be the optimal solution to the retrieval optimization problem.
We use CLIP embeddings of the retrieved images for generation, and bound its difference from the optimal.
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A.3. Lemma 1

Proof. of Lemma 1. [62] proved in Theorem 3.1, that sampling from Eq. (9) produces samples which are copy-protected. In
Algorithm 1, we sample using the score function: 0.5(Vy, log [ g:(z¢|x0)¢™ (z|c)dzo + Vs, log [ qi(w¢|70)q'? (x|c)dxo,
which smoothly interpolates between A(0,1) at ¢ = T, and Eq. (9) at ¢ = 0. We need to show that using Langevin
based backward diffusion in Algorithm 1 indeed generates samples from the desired distribution. The convergence results



for Langevin dynamics have been well studied in practice [10, 16, 44, 61], [48] has shown that Langevin dynamics converge
exponentially fast to the distribution estimated by the gradients. Theorem 2.1 from [48] provides the result on the convergence
of Langevin dynamics in continuous time. For the sake of completeness we will extend the results from [66] to show that
Algorithm 1 generates samples from Eq. (9).

We will re-state the assumptions from [66], for a distribution v (z;), and score estimator s;(x¢). In our case v (x) =
0.5(Vy, log [ qi(z¢|w0)g™M (z]c)dzo + V4, log [ qi(x¢|20)q'? (x|c)dxo), and s;(x¢) is the average of the safe diffusion flow
and retrieval mixture score.

1. LSI: For any probability distribution p, Cy > 0, [ p; log %dm < % i ptHng %Hdw
2. L-Smoothness: — log v; is L-smooth ' ’ '

3. Lipschitz score estimator: s;(x;) is Ls-lipschitz

4. MGF error assumption: M; = \/E,, [exp 7|V logv(z;) — s¢(¢)[|2] < 00

Then from Theorem 1 in [66] we know that
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where N is from the Algorithm 1, C; = O(T), Cy = 3 Eq. (14) result is the obtain by running the inner loop in

Algorithm 1. Using the previous equation recursively for Algorithm 1, we obtain that,
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where vo(zg) is the distribution in Eq. (9). Since we use DNNs with sufficient capacity, we can assume that M; — 0, then
as e — 0, and T — oo, we have that KL(po(zo)||vo(20)) — 0, which implies that Algorithm 1 generates samples from
Eq. (9). O

A 4. Proposition 3
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A.5. Lemma 2

Proof. of Lemma 2 We use Proposition 3 in Algorithm 2 for CPR-generation. Let ¢(!) be the safe model in accordance with
the assumptions in Sec. 5. To show that Algorithm 2 is NAF, we need to bound A,x. To show that g(x¢|c, t) satisfies NAF



we need to bound:
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J is our control parameter in CPR-Choose which controls k.. If a conservative approach is to be followed, then J should be
chosen such that > =t b ] €A € (ti+1 — t;) is small, which bounds k.., the copy-protection leakage.

CPR-Min, CPR-Alt In practice we discretize the time-steps of the backward diffusion process. In this setting we pro-
tect the entire sequence {zr,--- ,xo} instead of protecting only the final prediction xg. The probability of the sequence
{zp, -+ ,x0} is denoted by ¢(zo|x1,¢) - q(xr_1|TT,C)¢(xT|C) Using the chain rule of probability. To show that the
method satisfies NAF, we need to bound:
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where o 4, a4, 07 are the coefficients using the backward diffusion depending on the choice of sampler, for eg. DDPM
[27], DDIM [58], Langevin dynamics [12], b is an upper bound on the maximum difference between the MSE for the two



diffusion processes. Similar to the previous derivation, ) _, . ; — through J provides a control knob to the user to control the
Ot
Apnax for copy-protected generation. O

B. Implementation Details

We use the Stable diffusion [49] and Stable diffusion unCLIP [47] model for all the experiments in the paper. We use the
Stable diffusion model to generate safe flow corresponding to the safe distribution ¢(*), and the Stable diffusion unCLIP
model to generate the retrieval mixture score ¢(2). We use classifier free guidance with a guidance scale of 7.5 in all the
results. We use 2k samples from the MSCOCO dataset [36] as our private retrieval data store.

C. Additional Figures
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Prompt: A scenic view features a calm lake, boats and mountains in the distance.

Figure 5



Safe Model Retrieved Image Retrieval Score  Retrieval-Mix-Score CPR-KL CPR-Min CPR-Alt
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Prompt: A dog dressed in sunglasses, wig, and a scarf.

Figure 6
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Prompt: A steaming locomotive coming down the tracks quickly.

Figure 7



