Bayes’ Rays: Uncertainty Quantification for Neural Radiance Fields

Supplementary Material

A. Discussion on Geometric Uncertainty Evalu-
ation Metrics

Bayes’ Rays introduces a unique perspective by emphasiz-
ing the computation of geometric variance in volumetric
points rather than directly measuring pixel-space color or
depth variance. This approach proves advantageous for tasks
such as NeRF clean-up. To show the effectiveness of our
geometric uncertainty, we correlate it with depth error, a
valuable geometric signal with available ground-truth maps.
It is important to note that we are computing the variance of
possible deformation vectors on the reconstructed geometry
in 3D space, which differs from the scalar depth distribution
in pixel-space. Moreover, our geometric variance is only
valid up to a scale factor, as it estimates the geometric vari-
ance at the reconstructed scene’s scale rather than the ground
truth.

Given these factors, we avoid using the negative log likeli-
hood (NLL) as a reliable metric for our estimated geometric
uncertainty. Using NLL with Gaussian likelihood assumes
equivalence between our estimated geometric distribution
and the pixel-space depth distribution at the ground-truth
scale. It also assumes a Gaussian distribution for the pre-
dicted depth, which is frequently inaccurate, especially when
employing a density regularizer (e.g., Laplacian prior) during
NeReF training.

We opt for Area Under Sparsification Error (AUSE) [2, 3]
as a more reliable measure for capturing the correlation be-
tween estimated geometric uncertainty and depth error in our
application. Unlike other metrics, AUSE is not influenced by
scene scale or absolute variance values. Instead, it reflects
how well the estimated uncertainty describes depth error
by comparing pixel depth errors and uncertainties relatively.
It is defined as the difference between the area under the
curve representing accumulated depth errors when pixels are
sorted by uncertainty (A"), and the area under the curve rep-
resenting accumulated depth errors when pixels are sorted
by depth error (A%):

AUSE = A" — A%,
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Here, N represents the number of error bins. F;* denotes the
accumulated normalized absolute depth error of the ith bin
when all pixel depths are sorted decreasingly with respect to
their uncertainty value, and E¢ represents the same metric
but when the pixels are sorted by depth error decreasingly.
Note that in scenarios where NeRF fails completely in
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Figure 1. Bayes’ Rays outperforms CF-NeRF when both applied
to vanilla NeRF architecture.

learning the scene (resulting in infinite error everywhere),
the AUSE metric loses its informative value as the ordering
of pixels based on their error becomes meaningless.

B. Comparison of Uncertainty Estimation on
Vanilla NeRF

Unlike CF-NeRF [1], our post-hoc, architecture-agnostic
method can easily leverage advancements in newer NeRF
architectures. To ensure a fair comparison, we provide a
comparison between CF-NeRF [1] and Bayes’ Rays when
both are using vanilla NeRF as their underlying NeRF archi-
tecture, in Figure 1.

C. Application in Next Best View Planning

Epistemic uncertainty can be utilized to enable optimal plan-
ning of subsequent views when capturing a scene, as a way of
gathering maximum information with a minimal number of
views. We validate our derived uncertainty by demonstrating
its effectiveness in this application. We mirrored ActiveN-
eRF [5] settings, conducting experiments with 3 stages of
view selection, adding four new images at each stage (a to-
tal of 16 images). We compared results on NeRF synthetic
dataset scenes (‘hotdog’, ‘lego’, ‘chair’, and ‘drums’) to
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Random 15.44 17.02 18.78 19.97
FVS 15.44 18.02 18.87 20.12
Ours 15.44 17.26 20.05 21.24

Figure 2. Bayes’ Rays can be applied to next best view planning,
outperforming random and farthest view sampling (FVS) strategies.
The results after third step of sampling are depicted.
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Figure 3. Ablation Study on choice of M and )\ on a real scene,
shows little sensitivity to choice of A = JCT/s and diminishing

returns for high grid resolution.

baselines from [5]. Even a simple metric like pixel-space
average uncertainty from Bayes’ Rays outperforms random
and heuristic-based methods, such as farthest view sampling
(Figure 2).

D. NeRF Clean-Up Per-Scene Results

We provide per-scene NeRF Clean-up results in Figures 5
to 16 in terms of PSNR, SSIM, LPIPS and Coverage for 10
evenly spaced thresholds set between 0 and 1.

E. Ablation Study on Real Data

We further ablated our choice of A and grid resolution M on
the #0000 scene from the ScanNet dataset as a real-world
scene (Figure 3). We compared the AUSE metric across
different hyperparameter values in our method. The results
revealed minimal sensitivity to changes in A, with signifi-
cant shifts in the AUSE metric only happening with large
changes in A. Analyzing the effect of grid resolution on real
data echoed the findings depicted in Figure 5 of the main
paper. Lower resolution grids tend to underestimate uncer-
tainty, while results stabilize at higher resolutions, indicating
diminishing returns.

F. Orthogonality to Aleatoric Uncertainty

One limitation of our approach is its inability to detect
aleatoric uncertainty, which refers to uncertainty stemming
from inherent noise in the data. A clear example of such
noise includes the presence of distractors or transient objects
within the training data. As depicted in Figure 4, Bayes’
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Figure 4. Bayes’ Rays and aleatoric uncertainty detection methods
act as complementary.

Rays primarily discerns epistemic uncertainty, which is dis-
tinct from the uncertainty identified by aleatoric uncertainty
detection techniques (such as NeRF-W [4, eq. 13] and Ac-
tiveNeRF [5, eq. 11]). While Bayes’ Rays identifies un-
certainty arising from geometric ambiguities (e.g., the flat,
textureless table), these methods pinpoint uncertainty arising
from the noisy distractors (e.g. the cupcake), therefore com-
plementing each other. Furthermore, our analysis demon-
strates that utilizing a method robust to aleatoric noise, such
as RobustNeRF [6], preserves the output of Bayes’ Rays,
highlighting their orthogonality.
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Scene\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 14.72 16.64 18.49 18.37 18.24 18.19 18.19 18.20 18.20 18.19
SSIM 1 0.59 0.59 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
LPIPS | 0.33 0.29 0.26 0.27 0.28 0.28 0.28 0.28 0.29 0.29

Coverage 1 39.49 64.52 79.95 83.58 84.12 84.16 84.16 84.17 84.17 84.19

Figure 5. Aloe Scene

Scene\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR * 13.94 14.18 14.20 14.23 14.24 14.24 14.24 14.23 14.23 14.22
SSIM 1 0.39 0.40 0.40 0.39 0.38 0.38 0.384 0.38 0.38 0.37
LPIPS | 0.37 0.37 0.37 0.38 0.38 0.39 0.39 0.39 0.39 0.39

Coverage 1 59.99 73.05 80.29 83.039 83.97 84.35 84.51 84.65 84.86 86.36
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Figure 6. Art Scene

Scene\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 15.79 16.29 16.15 15.95 15.84 15.83 15.82 15.77 15.76 15.98
SSIM 1 0.49 0.51 0.49 0.47 0.46 0.45 0.45 0.45 0.45 0.44
LPIPS | 0.29 0.30 0.33 0.35 0.37 0.38 0.39 0.39 0.40 0.43

Coverage 1 3591 46.59 60.53 68.27 70.65 72.03 73.01 74.01 75.29 80.17

Figure 7. Car Scene
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Scene'\ Threshold

15.07 14.30 14.14 14.06 13.98 13.92
0.47 0.44 0.43 0.42 0.42 0.42
0.32 0.39 0.42 0.43 0.44 0.44
83.88 92.58 94.79 95.56 95.92 96.20

Figure 8. Century Scene

Scene\ Threshold

0.3 0.4 0.5 0.6 0.7 0.8
15.97 15.34 15.18 15.14 15.13 15.11
0.48 0.46 0.45 0.45 0.45 0.45
0.37 0.43 0.44 0.45 0.45 0.45

71.76 89.26 92.50 93.21 93.34 93.33

Figure 9. Flowers Scene

0.3 0.4 0.5 0.6 0.7 0.8
14.49 14.36 14.41 14.48 14.53 14.58
0.439 0.42 0.42 0.41 0.41 0.41
0.43 0.46 0.48 0.48 0.49 0.49

87.41 91.87 94.49 96.19 97.24 98.14

Figure 10. Garbage Scene
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Scene'\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 16.34 16.01 15.75 15.69 15.71 15.75 15.75 15.78 15.82 15.90
SSIM 1 0.48 0.45 0.38 0.35 0.34 0.34 0.33 0.33 0.33 0.31
LPIPS | 0.31 0.32 0.39 0.44 0.47 0.48 0.49 0.50 0.50 0.52

Coverage 1 48.94 65.67 83.68 87.92 89.77 90.68 91.27 92.00 93.25 95.66
Figure 11. Picnic Scene
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Scene\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 20.16 20.727 25.09 25.77 26.07 26.19 26.26 26.26 26.22 20.00
SSIM 1 0.91 0.91 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.66
LPIPS | 0.025 0.04 0.04 0.05 0.06 0.07 0.08 0.08 0.09 0.34

Coverage 1 2.80 14.06 39.65 59.55 65.92 68.14 69.29 70.13 71.25 92.22

Figure 12. Pikachu Scene

Scene\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 15.90 18.07 19.28 19.45 19.52 19.52 19.53 19.53 19.53 19.53
SSIM 1 0.61 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.56
LPIPS | 0.21 0.25 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29

Coverage T 42.59 72.50 83.49 89.06 90.55 90.85 90.96 91.03 91.11 91.36

Figure 13. Pipe Scene



Scene\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 17.32 19.83 20.71 21.07 20.97 20.86 20.79 20.76 20.74 16.87
SSIM 1 0.85 0.80 0.79 0.74 0.72 0.72 0.72 0.71 0.71 0.62
LPIPS | 0.07 0.10 0.11 0.14 0.16 0.16 0.17 0.17 0.17 0.31

Coverage 1 321 10.94 20.34 30.95 34.97 35.94 36.53 37.08 37.80 66.59

0.1

Figure 14. Plant Scene

0.3 0.6

Scene\ Threshold ‘ 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 18.45 18.73 17.88 19.68 20.06 20.18 20.20 20.20 20.21 20.21
SSIM 1 0.53 0.55 0.64 0.69 0.71 0.71 0.71 0.71 0.71 0.71
LPIPS | 0.16 0.19 0.16 0.25 0.24 0.24 0.24 0.24 0.24 0.24

Coverage 1 15.89 26.73 57.10 86.52 91.17 91.55 91.59 91.59 91.60 91.60

Figure 15. Roses Scene

Scene'\ Threshold ‘ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 00
PSNR 1 14.77 16.27 18.63 19.12 18.67 18.20 17.94 17.74 17.61 17.57
SSIM 1 0.71 0.70 0.70 0.72 0.71 0.70 0.69 0.69 0.69 0.69
LPIPS | 0.14 0.16 0.23 0.24 0.27 0.28 0.29 0.30 0.31 0.31

Coverage 1 14.95 44.86 66.83 77.12 81.19 82.44 83.05 83.47 83.73 83.97

Figure 16. Table Scene
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