
Bayesian Differentiable Physics for Cloth Digitalization

Supplementary Material

1. Cusick Drape Dataset
Our current Cusick drape dataset includes 25 types of com-
mon fabrics, each of which with multiple samples. As listed
in Tab. 1, these fabrics are different in material, woven pat-
tern, area density (ρ), and average thickness. In our Cusick
drape test, they also show distinctive drape shapes. We test
each sample multiple times. In every test, our Cusick drape
meter captures a drape image and reconstructs its 3D mesh.
It took approximately more than 15 working days to do the
textile testing. At the end, there are 660 drape images and
meshes in our current dataset which will be released with
our paper. Fabric 1-5 are used in our experiments which
are the Cotton White, Cotton Blue, Viscose White, Cotton
Pink, and Wool Red respectively.

The lack of training data is the deciding factor that hin-
ders the application of deep learning in textile. To our best
knowledge, the only open source cloth drape dataset was
proposed in [4] very recently. Compared with their dataset,
our new dataset has multiples advantages. First, our dataset
includes 25 types of common fabrics and has more train-
ing samples, which comprehensively covers a wide range
of fabrics, with accurate description of the materials. The
number of types of fabrics and details are unclear in their
data. Second, their data only provides the estimated ma-
terial parameters tied to their estimation methods, which
might make it difficult to transfer them to a different cloth
model. In contrast, not only do we provide the raw Cusick
drape testing data (i.e. images and meshes), we also pro-
vide the estimated parameters. Furthermore, their param-
eters have specific values while ours are distributions that
capture cloth material heterogeneity and dynamics stochas-
ticity. Last but not the least, our Cusick drape testing rigidly
follows the British standards and the textile measurements
(e.g. measuring area density and thickness) are conducted
in a rigorously controlled environment so that they are more
accurate and easier to be reproduced/verified in future re-
search. By contrast, their drape testing is measured by cus-
tomized apparatus under a less controlled setting.

2. Performance
Simulation efficiency is critical to our cloth digitalization
method because (1) training BDP usually requires longer
time than deterministic models, and (2) generalizing the
digitialized cloths on garments needs to simulate larger and
more complex meshes. Our implementation of the differen-
tiable cloth model is highly inspired by [5]. But ours is more
GPU-friendly, and therefore runs fast. We compare the for-
ward simulation and the backward gradient computation,

which are two major time-consuming operations for differ-
entiable physics models, between our implementation and
[5]. We use three meshes with different resolutions, con-
sisting of 279, 1205, and 2699 vertices respectively. Tab. 2
shows the significant performance gain by our vectorization
and GPU parallel computing. The test is conducted on a
PC with an Intel Xeon E5-1650 v4 3.60GHz CPU and an
NVIDIA TITAN Xp GPU.

3. Additional Results
3.1. Necessity of Material Heterogeneity

Figure 1. Learning from drape shapes of the 3 samples cut from
fabric Cotton Blue. The GT rows show the within-sample varia-
tions in drape shapes. The LR rows show the HETER model accu-
rately learns these different drape shapes. The heat maps (bottom)
show distributions the per-element bending stiffness B over the
mesh.

Our model attributes the within-sample shape variation
to cloth material heterogeneity. To demonstrate it, we use
the HETER (deterministic heterogeneous model) to learn



Fabric Index Material Woven # Samples Avg ρ (kg/m2) Avg Thickness(mm)

Fabric 1 Cotton Plain 12 0.059 0.188
Fabric 2 Cotton Basket 12 0.192 0.402
Fabric 3 Viscose(95%) Elastane (5%) Knit 12 0.213 0.560
Fabric 4 Cotton Plain 12 0.114 0.200
Fabric 5 Wool Twill 12 0.274 0.571
Fabric 6 Polyester Satin 12 0.183 0.240
Fabric 7 Polyester(65%) Cotton(35%) Plain 12 0.100 0.195
Fabric 8 Linen Plain 12 0.230 0.485
Fabric 9 Cotton Plain 12 0.249 0.423

Fabric 10 Viscose (70%) Polyester (30%) Plain 12 0.204 0.498
Fabric 11 Wool Twill 2 0.148 0.210
Fabric 12 Cotton Plain 2 0.313 0.188
Fabric 13 Cotton Plain 2 0.107 0.15
Fabric 14 Cotton Plain 2 0.139 0.292
Fabric 15 Cotton Plain 2 0.211 0.436
Fabric 16 Synthetic Knit 2 0.191 0.514
Fabric 17 Cotton Twill 2 0.278 0.7
Fabric 18 Synthetic Plain/Knit 2 0.154 0.306
Fabric 19 Synthetic Plain/Knit 2 0.282 0.627
Fabric 20 Synthetic Twill 2 0.259 0.596
Fabric 21 Synthetic Knit 5 0.186 0.7
Fabric 22 Synthetic Plain 5 0.231 0.386
Fabric 23 Cotton Knit 5 0.163 0.704
Fabric 24 Cotton Plain 5 0.104 0.200
Fabric 25 Cotton Plain 5 0.060 0.152

Table 1. Fabric information in our Cusick drape dataset. Fabric 18 and Fabric 19 are double-layer fabrics whose one side is plain woven
and the other side is knit.

Test (sec/step) Mesh 1 Mesh 2 Mesh 3

[5] Forward 0.643 2.793 3.861
[5] Backward 1.400 7.379 26.212
Ours Forward 0.038 0.073 0.178
Ours Backward 0.062 0.228 0.660

Table 2. Comparing the run time between [5] (collision handling
off) and our model in forward simulation and backward gradient
computation. Our implementation is much faster.

the drape shapes of six samples (three from Cotton Blue
and three from Viscose White). The ground-truth (GT) rows
in Fig. 1 and Fig. 2 show that samples from the same fab-
ric are obviously different. The learned (LR) rows in Fig. 1
and Fig. 2 demonstrate that the HETER can accurately learn
from the different drape shapes. The heat maps in the last
row illustrate the learned distributions of the cloth physical
parameters across the meshes. This result demonstrates that
within-sample drape shape variation can be accounted for
by cloth material heterogeneity and varied physical param-
eter distributed across the mesh in different samples.

3.2. Learning from Meshes

We train the model using the reconstructed 3D meshes
as the ground-truth which include geometry information,
by minimizing the MSE between the simulated and real
meshes. As shown in Fig. 3, our BDP also exhibits out-
standing training sample fitting and generalization ability.
Quantitatively, the MSE and H.Dis are 0.051 and 0.023 un-
der the same setting as Table 1 in the paper. Comparatively,
3D meshes do not improve the results and most testers can-
not generate 3D mesh data.

3.3. Effectiveness of Learning

To digitalize cloths, our BDP uses gradient-based optimiza-
tion to find cloth physical parameters such that cloth drape
shape can be optimized toward the given ground truth sam-
ple. Fig. 4 shows that the optimization is effective, where
the initial guess on the parameters lead to initial drape
shapes that are obviously different from the GT, but are ad-
justed toward the GT after training.

The digitalized cloths can be applied into garment simu-
lation and obviously reflect different cloth mechanical char-



Cloths Cotton White Cotton Blue Viscose White Cotton Pink Wool Red

Avg. Stretching 56.6019 63.9698 4.5117 101.4625 78.3332
Avg. Bending 1.008× 10−5 8.249× 10−5 4.991× 10−5 4.829× 10−5 0.0001
Avg. Std 1.435× 10−6 0.0001 0.0214 3.860× 10−6 2.057× 10−5

Table 3. The average stretching and bending stiffness of the five select cloths reflect their distinguishable physical properties. In addition,
their average physical parameter standard deviations show their different material heterogeneity and dynamics stochasticity.

Figure 2. Learning from drape shapes of the 3 samples cut from
fabric Viscose White. The GT rows show the within-sample varied
draped shapes. The LR rows show the HETER model accurately
learns these different drape shapes. The heat maps (bottom) show
distributions the per-element stretching stiffness C over the mesh.

acteristics in various motions (as shown in Figs. 5 to 7).
For example, in Fig. 6, there are more folds on the Viscose
White than on the Wool Red, because the former is much
softer (small bending stiffness) than the latter.

In addition, our BDP embeds cloth material heterogene-
ity and dynamics stochasticity (Fig. 8). Conversely, the
HOMO is unable to digitalize and simulate these cloth prop-
erties (Fig. 9).

Figure 3. When learning from meshes, BDP can also fit the train-
ing sample(a) and generalize to the unseen testing samples(c).

4. More comparison
Fig. 10 provides the visual comparison between the
gradient-based (our BDP) and the gradient-free optimiza-
tion, i.e. Bayesian Optimization (BO), method. It confirms
the quantitative result given in the main paper that the BDP
gains a better results with fewer optimization steps than the
BO.

5. Posterior Space
Although we mainly focus on digitalizing cloths, the
learned posterior space has other potentials. The first one
is doing a quantified comparison between different cloth
types. The five digitialized cloths in our experiment are



Figure 4. Given the initial parameters, the simulated drape shapes (b and e) are different from the training samples. After training, our
BDP optimize cloth physical parameters and fit the given GT drape silhouettes (c and f).

representative, where we can derive some insights from the
learned parameter distributions. As shown in Tab. 3, the es-
timated parameters also reflect our daily qualitative obser-
vations of the cloths. For instance, the mean of the Viscose
White’s stretching stiffness parameters are smaller than the
other cloths’ because it is a knitted fabric which is soft and
can be used to make T-shirt or socks which are very stretch-
able. By contrast, the mean of the Cotton Pink’s stretching
stiffness parameters are larger because it is a tightly woven
fabrics which is stiff, and can be used as tablecloths. In ad-
dition, the standard deviation of the Viscose White’s phys-
ical parameters are larger because its loose woven pattern
tends to cause material heterogeneity and lead to dynamics
stochasticity. This kind of analysis has been pursued so far

in textile when it comes to Cusick drape data, but rarely with
the kind of material details (reflected in e.g. material het-
erogeneity and dynamics stochasticity) given by our BDP
model.

Furthermore, enabled by BDP, we could learn all cloth
types in our dataset or simply learn a subset of represen-
tative ones, then combine the learned parameter distribu-
tions into a Gaussian Mixture Model (GMM) to represent
the material space of all common fabrics. This GMM could
then be employed for other applications such as detecting
whether a tested material is likely to be a common fabric,
or even quality control in detecting anomaly material e.g.
due to manufacturing defects. This could be done by first
learning the material, then compute the likelihood of the es-



Figure 5. The digitalized cloths exhibit different mechanical characteristics in the walking motion.

Figure 6. The digitalized cloths exhibit different mechanical characteristics in the dancing motion.

timated material parameters in the GMM. Although this is way out of the scope of this paper, we can still give a simple



Figure 7. The digitalized cloths exhibit different mechanical characteristics in the jumping motion.

Cloths Cotton White Cotton Blue Viscose White Cotton Pink Wool Red Sum

Linen Green 8.669× 1030 1.202× 1019 9.796× 1030 7.307× 1030 7.707× 1029 2.654× 1031

Paper 2.253× 1038 2.253× 1038 2.254× 1038 2.252× 1038 2.253× 1038 1.126× 1039

Table 4. The Kullback–Leibler(KL) divergence of the estimated parameters from the Linen Green sample and the paper parameters to our
selected five representative cloths’ parameters probability distributions. The smaller the KL divergence is, the closer the parameters are to
the distributions. Thus, (1) the “Linen Green” is more like Cotton Blue among the five kinds of cloths and (2) the “Linen Green” is more
like fabric than paper.

illustrative example. We select a sample from a cloth type
that is different from the five types for the learning so far,
refer to it as “Linen Green”, and digitalize it by our BDP
model (Fig. 11 (a-c)). To make the comparison more vi-
sual, we make a paper-like material which shows obviously
different drape shape (as shown in Fig. 11 (e)). Then we
compare the likelihoods of their material parameters in the
GMM consisting of the five Gaussians learned in our ex-
periments. However, both likelihoods are very low, despite
the likelihood of Linen Green is several magnitudes higher
than paper-like. This suggests that only five types are not
sufficient to capture the full common cloth material space.
Learning more cloth types in our dataset will mitigate this
issue. But we can still compute similarities between the

newly learned distributions and the original five types, mea-
sured by the Kullback-Leibler (KL) Divergence . The re-
sults are shown in Tab. 4. Interestingly, Linen Green is by
far most similar to Cotton Blue compared with other types,
which is consistent with qualitative observations (as shown
in Fig. 11 (d)). In contrast, paper-like is dissimilar to ev-
ery material, which is expected. In future, we will explore
what materials need to be learned and incorporated into this
GMM model so that the posterior distribution captures bet-
ter the full material parameter space.

6. Force Models
In this section, we give more details about our cloth model.
A cloth sample is modeled as a circular triangular mesh con-



Figure 8. Given the digitialized cloths, our BDP model can sim-
ulate the skirts made from these cloths and reflect cloth material
heterogeneity and draping stochasticity.

sisting of v vertices. Its state S is defined by its vertices
position, x ∈ R3×v , and velocity, ẋ ∈ R3×v , in Cartesian
coordinates. Therefore, a cloth motion is represented by a
state sequence: S0:n = {St : t ∈ Z+; t ≤ n}, which de-
notes the position and velocity change over time. A physics-
based cloth simulator aims to simulate a cloth motion by
recurrently predicting its future state St+1 = {xt+1, ẋt+1}
given the current state St = {xt, ẋt}:

xt+1 = xt + hẋt (1)
ẋt+1 = ẋt + hẍt (2)

where h is the time step size (time lapse between every two
consecutive states) and the second-order time derivative, ẍt,
is vertices acceleration. To gain high simulation stability,

implicit Euler method [2] is commonly used:

xt+1 = xt + hẋt+1 (3)
ẋt+1 = ẋt + hẍt+1 (4)

According to Newton’s Second law, we have

F = Ma = Mẍ (5)

where M is the general mass matrix and F is the resul-
tant force which is the combination of internal and external
forces. In our differentiable cloth simulator, these forces are
decided by cloth sample’s current state, so we can define:

Ft = f(St) = f(xt, ẋt) (6)

where f denotes a general function, which must be differ-
entiable, takes as input the current state, St, and outputs the
resultant force. Through Taylor approximation[2], Eq. (3)
and Eq. (4) are converted to the governing equation of the
physical system:(

M− h
∂f

∂ẋ
− h2

∂f

∂x

)
∆ẋ = h

(
Ft + h

∂f

∂x
ẋt

)
(7)

which needs to be solved to calculate ∆ẋ and update the
cloth sample’s state:

ẋt+1 = ẋt +∆ẋ (8)
xt+1 = xt + hẋt+1 (9)

In our differentiable cloth simulator, the resultant force is
defined as: F = Fstretch + Fbend + Fgravity + Fhandle.
The stretching force [8] on a face j is:

F
(j)
stretch = −A(j)
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m∈(uu,vv,uv)
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m

(
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∂xi
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where ε(j)m denotes stretching strain and the xi are the three
vertices of the face. The stretching stresses σ(j)
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where c
(j)
11 , c(j)12 , c(j)22 , and c

(j)
33 are the stretching stiff-

ness in weft/course direction, the stretching stiffness in
warp/wale direction, Poisson’s ratio, and shearing stiffness.
The subscripts uu, vv, and uv denote cloths weft/course,
warp/wale, and diagonal directions respectively (Fig. 12
Left). ε = [ε

(j)
uu , ε

(j)
vv , ε

(j)
uv ] is the Voige form strain tensor.

The bending force around a bending edge w is defined as

F
(w)
bend = B(w) |e(w)|

ψ
(w)
1 + ψ

(w)
2

sin(
γ(w)

2
− γ̄(w)

2
)ui (12)



Figure 9. The clothes digitalized by the HOMO model is deterministic and has homogeneous material properties. Thus, the simulated
dresses that are made from the same cloth always have the identical geometry.

where B(w) is the bending edge w’s bending stiffness,
|e(w)| is bending edge’s rest length, ψ(w)

1 and ψ(w)
2 are the

heights of the two adjacent triangular face, γ(w) and ¯γ(w) is
the current and predefined rest dihedral angles between the
edge’s two adjacent faces (Fig. 12 Middle).

Material non-linearity means the material stiffness
changes with deformation magnitude non-linearly.
Anisotropy refers to the varied material stiffness in dif-
ferent deformation directions. To encode cloth material
non-linearity and anisotropy, our model adopts the piece-
wise linear physical models in [9] where the stretching
stiffness and bending stiffness are defined as two high-
dimensional matrices: C ∈ R6×4 and B ∈ R3×5. Then,
local stretching stiffness and bending stiffness are sampled
from C and B according to the mesh’s local deformation
and geometry. Wang et al.[9] model cloths as continuum
elastic shells so a stretching deformation can be described
by the Green-Lagrangian strain tensor [3], which can be

re-parameterized by Eigen Decomposition:

2

[
ε
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uu ε

(j)
uv

ε
(j)
uv ε

(j)
vv

]
=

(R(j)
φ )⊤

[
(λ

(j)
max + 1)2 − 1 0

0 (λ
(j)
min + 1)2 − 1

]
R(j)

φ

(13)

where the eigenvalues indicate the stretching deformation
magnitude and R

(j)
φ is a rotation matrix that indicates the

direction of the stretching deformation. λ
(j)
min can be ig-

nored because they find it has less influence on the stretch-
ing stiffness. The rotation matrix is decided by the bias an-
gle, φ, between a cloth sample’s rest warp-weft coordinate
system and its deformed local coordinate system [7]. This
way, the stretching non-linearity and anisotropy can be en-
coded as the stiffness which changes with parameters in the
2D space spanned by λ(j)max and φ. As in [9], we sample 6
data points (the 6 rows in the matrix C) in the polar space



Figure 10. Comparison of ground truth draped shape and the simu-
lated drape shapes learned by ours (b)(derivative-based), REMBO
(c) and HeSBO (d)(derivative-free) optimization.

spanned by λmax and φ where each data point contains c11,
c12, c22, and c33 which compose the 4 columns in the ma-
trix C. (We ignore the face index superscript, (j), to denote
the general form.)

To model non-linear bending stiffness, the variables in
Eq. (12) can represent the bending deformation so we define
a parameter α:

α(w) =
sin(γ

(w)

2 − γ̄(w)

2 )

h
(w)
1 + h

(w)
2

(14)

which is related to the curvature. To model the bending
anisotropy, we define another parameter called bending bias
angle, i.e. the angle between a bending edge and cloth
warp-weft coordinate system’s axes, which indicates bend-
ing deformation direction (shown in Fig. 13). Therefore, the
bending non-linearity and anisotropy can be encoded as the
stiffness which changes with the parameter in a polar space

spanned by α and bending bias angle. We sample 5 α’s and
3 bending bias angles (0◦, 45◦, and 90◦) which are the 5
columns and the 3 rows of bending stiffness matrix B.

Finally, to model the material heterogeneity, each mesh
face and bending edge are associated with a C and B.
Therefore, for a cloth consisting of f faces and e bend-
ing edges, the learnable parameters are f stretching ma-
trices and e bending stiffness matrices (the HETER model
in our experiments). To our Bayesian differentiable cloth
simulator, each C and B are sampled from the variational
distribution qθ(τ). Its learnable parameter is the distribu-
tion parameter θ of qθ(τ). As we assume qθ(τ) is dis-
tributed as a Gaussian, θ consists of the means and the
variances of the stretching stiffness and bending stiffness:
2× 4× 6 + 2× 3× 5 = 78 learnable parameters.

The gravity, Fgravity , is calculated on every face and
evenly divided by its three vertices. Therefore, the gravity
on the kth vertex is

F
(k)
gravity = m(k)g =

n
(k)
j∑

j=0

1

3
ρ(j)A(j)g (15)

where ρ(j) is the jth face’s area density and g =

[0.0, 0.0,−9.8]⊤m/s2. n(k)j is number of the adjacent faces
of vertex k (Fig. 12 Right). The handle force, Fhandle, is
used to pin and support a cloth sample, i.e. simulating the
inner support panel. To each vertex whose distance to the
center of the cloth is smaller than 9cm, the handle force is
computed as:

F
(k)
handles = khI3(x

(k) − x̄(k)) (16)

where x̄(k) denotes the kth vertex’s anchor position where
the vertex should be fixed and kh is the handle stiffness.

7. Derivatives of the Simulator
Now we have a fully differentiable cloth simulator. We then
compute the loss L that indicates the difference between the
predicted and ground truth cloth states. The loss gradients
with respect to the parameters ∂L

∂w can help learn the right
physics parameters via back-propagation. For simplicity,
we use Ay = b to represent Equation 7. The differential of
Ay = b is [6]:

Ady = db− dAy (17)

We can form the Jacobians of y with respect to A or b with
Equation 17. For example, to compute the ∂y

∂A , we need to
set dA = I and db = 0, then solve the equation and the
result is ∂y

∂A . As pointed out by Amos and Kolter [1], it is
unnecessary to explicitly compute these Jacobians in back-
propagation. We want to compute the product of the vector
passed from back-propagation, ∂L

∂y and the Jacobians of y,



Figure 11. Through digitalization (i.e. training BDP), cloth drape silhouette (b and c) is optimized toward the training sample(a). In
addition, (d) shows the simulated Cusick drape silhouette of a paper-like material.

Figure 12. Left: cloth weft and warp directions (or course and wale directions in knitted cloths) and three strain directions in a triangle.
Middle: bending force between two adjacent triangles. Right: triangle mass and gravity.

weft

warp

weft

warp

β1 β2

Figure 13. The bending bias angles, β1 and β2, of the two bending
edges (blue).

i.e.∂L∂y
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∂b . Assume A ∈ R3×3, y ∈ R3, and

b ∈ R3, then
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As

∂y1

∂b1
=
∂ (A−1)1,1b1 + (A−1)1,1b2 + (A−1)1,1b3

∂b1
= A−1

1,1

and similarly for ∂yi

∂bj
, Equation 18 can be represented as:

( ∂L
∂y1

∂L
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After computing ∂L
∂b , we need to compute ∂L

∂A . The b in
Equation 17 can be set to 0 because it is irrelevant when
computing ∂L

∂A . Then we have

Ady = −dAy (20)

The derivative of y with respect to Ai,j , the entry in the ith
row and jth column of the matrix A, is

∂y

∂Ai,j
= A−1

 0
−yj

0

 (21)



According to chain rule,

∂L
∂Ai,j

=
∂L
∂y

∂y
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=
∂L
∂b

⊤
AA−1
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The more general form is

∂L
∂A

= −∂L
∂b

y⊤ (23)
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