Continual Segmentation with Disentangled Objectness Learning
and Class Recognition

Supplementary Material

This supplementary material first presents a detailed
workflow of the class recognition process. Next, it provides
more comparisons with state-of-the-art methods. Finally,
more ablation studies and detailed results are reported.

A. Workflow of Stage 2 Class Recognition

In detail, we present the class decoder architecture
in Fig. Al. It is a single Transformer decoder block whose
key (K) and value (V) are pixel embedding; query (Q) is
positional embedding with task query. Note that only one
positional embedding (red), together with one task query
(blue), is fed through the class decoder once a time. The
task embedding (purple) is the corresponding output of the
task query, and the other embedding (gray) is discarded.
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Figure Al. Class decoder architecture.

We also illustrate the stage 2 class recognition process
in Algorithm Al. The class decoding process requires po-
sitional embeddings, task queries, and pixel embeddings as
input and outputs the class probability of all proposals.

B. More Comparisons with State-of-the-arts

We compare CoMasTRe with state-of-the-art continual seg-
mentation methods. Here, we additionally report quantita-
tive results in ADE20K 50-50 setting and qualitative results
of PASCAL VOC 75-1 and ADE20K /00-10.
Quantitative results in ADE20K 50-50 setting. As shown
in Tab. A1, we report benchmark results in ADE20K [8] 50-
50 setting. The results show that we achieve a new state-of-
the-art in this setting with 0.32 percent point (p.p) leap on
all metric compared with CoMFormer [2]. Specifically, our
method reaches a competitive new class performance while
maintaining better old knowledge (0.63 p.p gain compared
with CoMFormer). Furthermore, CoMasTRe performs bet-
ter across all learning steps, surpassing CoMFormer by
3.12 p.p and even can beat the highest per-pixel method
PLOP [3] by 0.30 p.p on avg.

Qualitative results on PASCAL VOC 2012. Compared
with CoMFormer [2], we visualize the segmentation results

Algorithm A1 Class recognition at step ¢

Input: £ = {e1,...,en}: matched positional embeds

pos
toak = 1{01,...,0:}: task queries at step ¢
&t = {¢1,...,¢}: classifiers at step ¢

Eéixel: corresponding pixel embeddings
g: class decoder

Output: P!: class probability at step ¢

1: forv < 1,...,M do

2: forj < 1,...,tdo

3 Quix < (€4, 0))

4 kij <+ 9(Qgl, 51laixe1)

5: 2 ¢,j(ki7lj)

6 end for

7 Zi < [2’7371, ey Zi,t]

8: p;  sigmoid(z;)

9: end for

10: Pt <« {p1,...

7pM}

Table Al. Benchmark results in ADE20K 50-50 setting. The 1*
and 2" highest results are marked in bold and underline.

. 50-50 (3 tasks)

Paradigm Method 150 51-150  all avg
MiB [1] 45.57 21.01 29.31 3898
SDR [5] 45.66 1876  27.85 34.25

Per-Pixel PLOP [3] 48.83  20.99 3040 3942
REMINDER (6] 47.11 2035 29.39 39.26
RCIL [7] 48.30 25.00 3250 @ —
Joint 5121 3277  39.00 —
CoMFormer [2] 49.20 26.60 34.10 36.60
Joint 5340 38.00 43.10 —

Query
CoMasTRe (ours) | 49.83 26.56 3442 39.72
Joint 54.09 3949 4436 —

under PASCAL VOC 15-1 in Fig. A2. By comparison, our
method is more resistant to forgetting old similar classes.
For example, CoMFormer starts to forget the horse after
learning sheep class at step 2 (first row) and misrecognizes
the dog as a sheep at step 4 (third row). Additionally, our
method is less prone to overconfidence on new classes, e.g.,
CoMFormer falsely recognizes a sofa at step 5 (first row),
but our method does not.

Qualitative results on ADE20K. As shown in Fig. A3, we
visualize the results in ADE20K 700-10 settings. The visu-
alization suggests that our method preserves better knowl-
edge of previous classes. Compared with CoMFormer [2],
our method correctly segments the field in the first row, the
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Figure A2. Qualitative results compared with CoMFormer [2] in PASCAL VOC 15-1 setting.

Table A2. Average recall (AR) of mask proposals in PASCAL

VOC 15-1 setting, where Lmask—kd for mask distillation, Los—kd
for objectness score distillation, Lpe—kq for position distillation, s
for objectness score, and « for high objectness threshold.

# | Case AR
s>0 s>«
1 Emask—kd 55.89 13.75
2| Los—xa 50.92  47.84
3 ‘Cmask—kd + Eos—kd M w
4 | Limask—kd + Los—ka + Lpe—ka | 35.84 48.83

transporter in the second row, the mirror in the third row,
the mountain in the fifth row, and the house in the sixth row.
In addition, CoMasTRe also proposes better masks for old
classes. For example, our method maintains the knowledge
of the door in the fourth row (yellow box) and the boat in
the sixth row (red boxes).

C. More Ablation Studies and Detailed Results

We present more ablation studies on the forgetting of ob-
jectness and the effectiveness of objectness score reweight-
ing. In addition, per-class segmentation results on PASCAL
VOC are reported.

Objectness forgetting analysis. We analyze the forget-
ting of objectness by ablating objectness distillation com-
ponents. The ablation is conducted in the same cases as in
Tab. 5 in the main text. For each case, we use average re-

Table A3. Ablation results of objectness score reweighting in PAS-
CAL VOC 15-1 setting by varying reweighting strength 5. Note
that no reweight is applied when 5 = 0.0.

#| B8 | 1-15 1620  all avg

1100|6747 41.83 6137 6847
2110 1] 69.79 4298 6341 70.35
3120 69.77 43.62 63.54 70.63

call (AR) to indicate the performance of mask proposals.
Here, s stands for the objectness score, and « is the object-
ness threshold during inference. As shown in Tab. A2, we
report the performance in PASCAL VOC [4] 15-1 setting.
By comparing case 1 and 3, without Los_kq, AR (s > 0)
remains unchanged, but AR (s > «) diminishes (-35.27
p.p AR), which means the objectness scores fail to indicate
old class objectness. By comparing case 2 and 3, we ob-
serve slight forgetting of mask proposals without £, ask—kd
(-4.71 p.p AR), showing the forgetting robustness of mask
proposals. When comparing case 3 and 4, we find position
distillation contributes most to continual classification (see
Tab. 5 in the main text), as the AR changes are negligible
(underlined in Tab. A2).

Effectiveness of objectness score reweighting. In Tab. A3,
we ablate the effectiveness of objectness score reweighting
mentioned in Sec. 3.3.1 of the main text. The reweight
strength 3 is set to 0.0, 1.0, and 2.0, respectively. Please
note that when f is set to 0.0, the distillation is equivalent
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Figure A3. Qualitative results compared with CoMFormer [2] in ADE20K /00-10 setting.

Table A4. Per-class segmentation results on PASCAL VOC 2012 in mloU (%). Incremented classes (inc) are marked in green.

Setting ‘ bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv ‘base inc all

19-1 (2steps) | 93.7 919 428 889 654 811 879 807 919 370 80.1 513 86.0 829 82.0 870 566 873 506 774 695|751 695 749
15-5 (2steps) | 93.5 904 436 908 642 828 882 88.6 941 428 809 705 894 827 84.6 88.4 394 591 389 620 6021797 519 731
15-1 (6steps) | 88.9 86.4 380 826 532 768 768 832 825 362 593 484 804 63.1 74.7 858 299 471 330 554 527|698 43.6 63.5

Joint ‘94,3 91.8 430 O91.1 653 852 922 872 931 442 853 694 905 869 853 884 607 839 481 854 68.3‘ —  — 781




to the regular unweighted one. The results show that the
reweighting (8 = 2.0) leads to 2.17 p.p performance gain
on all metric compared with the unweighted version.
Per-class results on PASCAL VOC. In Tab. A4, we pro-
vide per-class experimental results on PASCAL VOC 2012
in different continual segmentation settings. The results in-
dicate that in addition to learning new classes, the old class
performance can be further strengthened in later learning
steps compared with joint baseline, such as sheep class in
19-1 (+3.4 p.p) and car class in 15-5 (+1.4 p.p).
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