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1. Deduction Details of Optimizing r2 via Eq. (12)
Firstly, let us explicitly define the dimensions of certain variables: X , R1, and R2 have dimensions of d × n, d × m, and
d×m, respectively. For each element x(s,t) in X , we can calculate the gradient with respect to x(s,t) of R1 as follow:
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where s = 1, 2, · · · , d; t = 1, 2, · · · ,m. Note that we use the average gradient here to reduce the dimension of the matrix
derivative, thereby multiplied by an average coefficient 1/dm. Thus, the full gradient with respect to X of R1 is
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Similarly, the full gradient with respect to X of R2 is
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For the multiplication in Eq. (12), we utilize the Hadamard product for computing the element-wise product to keep the
dimension of the object f(r2) constant with the gradients:
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Therefore, the dimension of f(r2) is still d× n. Here, we rewrite the object function as
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Similar to Eq. (S1), we use the average gradient for each element r2(1,k) (k = 1, 2, · · · , n) of r2. Thus, we obtain the gradient
of f(r2) as
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The total gradient with respect to r2 of f(r2) can be formulated as

∂f(r2)

∂r2
= [

∂f(r2)

∂r2(1,1)
,
∂f(r2)

∂r2(1,2)
, · · · , ∂f(r2)

∂r2(1,n)
]1×n. (S7)

Thus, we can use Eq. (S7) to iteratively update r2 with some optimizer (like Adam [3]). Besides, Equation (S7) is decoupled
from the input token X .

2. More Experimental Results
In this section, we provide more experimental results to evaluate the effectiveness of our proposed ReiT. Expectation Over
Transformations (EoT) [2] is an effective way to generate robust adversarial examples that are generated by multiple per-
turbations or transformations. Here, we leveraged EoT plus PGD with 10 and 20 steps (EoT PGD-10 and EoT PGD-20) to
further evaluate our proposed method. The basic configurations are the same as the PGD attack and the hyperparameter of
EoT iteration is set as 2. Besides, we also used two black-box attacks, e.g., one-pixel attack (OnePixel) [4] and square attack
(Square) [1], to evaluate the black-box performance of our proposed method. For the configurations for the one-pixel attack,
the number of pixels to change is set as 1; the number of steps is set as 10; the population size, i.e. the number of candidate
agents or “parents” in differential evolution, is set as 10; the maximum batch size during inference is set as 128. For the
configurations for the square attack, the norm of the attack is set as ℓ∞; the maximum perturbation is set as 8/255; the max
number of queries (each restart) is set as 5,000; the number of random restarts is set as 1; the parameter to control size of
squares is set as 0.8; the loss function optimized is set as “margin”; the adapt schedule of norm to the max number of queries
is set as True. The results are shown in Tab. S1, which showcases that our proposed method achieves non-trial improvement
under EoT and black-box attacks.

Model Method EoT PGD-10 EoT PGD-20 OnePixel Square

DeiT-T vanilla 49.21 49.13 78.77 72.71
ReiT 49.87 49.74 80.02 79.69

Table S1. Results (%) on CIFAR-10 dataset under EoT PGD and two black-box attacks. The best results are stressed in BOLD.

Besides, as shown in Sec. 2, we use the metric of floating point operations (FLOPs) to evaluate the complexity and
computational cost in the inference stage for the vanilla method and the proposed method. The proposed module leads to a
very small amount of extra computation cost. Besides, on big-scale datasets, the proportion of the extra cost can be almost
negligible (less than 0.5%). Thus, the proposed module hardly affects scalability and practical deployment on large-scale
datasets or in real-time applications.

Dataset Method ViT-S/DeiT-S ViT-T/DeiT-T Swin-S Swin-T

CIFAR-10/100 vanilla 1.3839G 0.3469G 0.6960G 0.3556G

ReiT
1.3892G
(+0.38%)

0.3482G
(+0.38%)

0.7093G
(+1.91%)

0.3635G
(+2.24%)

ImageNet(te) vanilla 4.2488G 1.0786G 8.5450G 4.3719G

ReiT
4.2541G
(+0.12%)

1.0800G
(+0.12%)

8.5875G
(+0.50%)

4.3931G
(+0.49%)

Table S2. FLOPs of different models with different methods on different datasets in the inference stage.
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