
Structured Gradient-based Interpretations via
Norm-Regularized Adversarial Training

Supplementary Material

In this supplementary material, we first gave the proofs
for some of the propositions (Sec. A) and implementa-
tion details for the experiments in the main text (Sec. B).
Then we added additional experimental results to illus-
trate the efficacy of our proposed method further. For
the synthesized dataset, we gave a complete visualization
of the saliency maps generated with adversarial training
(Sec. C.1.1). For ImageNette, we compared with additive
Gaussian noise during training (Sec. C.2.1), free adversarial
training (Sec. C.2.2), and adversarial attacks with momen-
tum (Sec. C.2.3). We further showed that our in-processing
scheme can better preserve the fidelity of the interpretation
compared with post-processing methods (Sec. C.2.4) while
integrating both methods could produce visually coherent
maps (Sec. C.2.5). In addition, we conducted sanity checks
to show our method guarantees high fidelity (Sec. C.2.6).
Finally, we visualized the results of interpretation attacks to
further illustrate the robustness of our method (Sec. C.2.7).
For the CUB-GHA dataset, we compared our interpretation
harmonization strategy with vanilla l2-norm-regularized ad-
versarial training (Sec. C.3.1).

A. Proofs

In this section, we gave the proofs for some of the observa-
tions and propositions.

A.1. Proof of Observation 1

According to the Taylor’s theorem, we have

∣∣L̂(fθ(x), y, δ)−L(fθ(x+ δ), y)
∣∣

=|1
2
δTHL(fθ(x),y))(x+ γδ)δ|

≤1

2
∥δ∥2∥HL(fθ(x),y))(x+ γδ)∥

≤1

2
λϵ2.

Where HL(fθ(x),y))(·) is the Hessian matrix of the
L(fθ(x), y)) w.r.t x and γ ∈ [0, 1]. The last in-equation
holds because we assume fθ(x) is λ-smooth and δ is ϵ-
bounded.

A.2. Proof of Proposition 2

h(z) = sup
x
{xT z− ϵ∥x∥2,1}

=

t∑
j=1

sup
xSj

{xT
Sj
zSj

− ϵ∥xSj
∥}

=

t∑
j=1

sup
t≥0

sup
∥xSj

∥=t

{∥zSj
∥t− ϵt}

=

{
0 if ∥zSj

∥ ≤ ϵ,∀j
+∞ else

= I(∥z∥2,∞ ≤ ϵ).

A.3. Proof of Proposition 3

h(z) = sup
x
{xT z− ϵ1∥x∥1 − ϵ2∥x∥22}

=

n∑
i=1

sup
xi

{xizi − ϵ1|xi| − ϵ2x
2
i }

=

n∑
i=1

PQϵ1,ϵ2(zi),

where

PQϵ1,ϵ2(z) =


1

4ϵ2
(z − ϵ1)

2 if ϵ1 < z

0 if − ϵ1 ≤ z ≤ ϵ1
1

4ϵ2
(z + ϵ1)

2 if z < −ϵ1.

A.4. Proof of Proposition 4

This proposition holds by reusing the proof of Proposition 3
with ϵ1 = 0 and setting different ϵ2 for every element of z.

B. Implementation details
In this section, we introduced the implementation details for
the experiments. All experiments were performed in Py-
Torch 1.12.1 using one Nvidia GeForce RTX 2080 GPU.

B.1. Experimental setup for synthesized dataset

The synthesized dataset comprised 10 classes. We gener-
ated 4096 images for training and 1024 images for testing.
All images were of the size 512 × 512. The synthesized
dataset formed a hierarchy with a circular, rectangular, and
tail category. Each sample exhibited one among the three
types (dark, blurred, and noisy) of random background. We

used ResNet-34 [12] pre-trained on ImageNet as the clas-
sification network and trained the network with the Adam
optimizer. The experiments used a batch size of 16, an ini-
tial learning rate of 0.001, a momentum of (0.5, 0.999), and
a weight decay of 10−5. As the task is very simple and easy
to over-fit, we set the number of training epochs to be 10.

B.2. Setup for training ImageNette

ImageNette is a smaller subset of 10 easily classified classes
from Imagenet. The dataset contains 9469 images for train-
ing and 3925 images for testing. To train a classification
network, we re-sampled all images into the size of 224×224
and then normalized the images to have zero mean and unit
standard deviation. We used Efficientnet-B0 [34] as the
classification network, which was trained by Adam opti-
mizer with an initial learning rate of 3×10−4, a momentum
of 0.999, and a weight decay of 10−4. The experiments use
a batch size of 16. We set the number of training epochs to
be 200.

B.3. Details of one-step optimization for adversarial
training.

To speed up the adversarial training, we utilized the analyti-
cal solution to the approximate optimization problem given
in Eq. 3 as the adversarial perturbation, which could be de-
rived without iteration. According to Observation 1, this so-
lution approximates the optimal solution well. Specifically,
we gave the formula for the approximate solution:
• L1-norm:

δ∗ = ϵsgn(∇xL(fθ(x), y)).

• L2,1-group-norm:

δ∗ = ϵ[
∇xS1

L(fθ(x), y)
∥∇xS1

L(fθ(x), y)∥
, · · · ,

∇xSt
L(fθ(x), y)

∥∇xSt
L(fθ(x), y)∥

].

• elastic net:

δ∗ = ϵ1sgn(∇xL(fθ(x), y)) + 2ϵ2∇xL(fθ(x), y).

We noted that for L1-norm regularization, the analytical so-
lution to the approximate optimization problem gives ex-
actly FGSM.

B.4. Details of iterative adversarial training.

We conducted gradient ascend for iterative adversarial train-
ing. The number of steps was set to be 7, and the step size
is 0.3. We normalized the norm of the gradients to stabilize
the training. For L1-norm, we followed the original training
of PGD to utilize the sign of the gradients. For elastic-net
and group-norm we normalized the gradients so it has unit
L2-norm. Moreover, to facilitate convergence, we initial-
ized the perturbation with the analytical solution to the ap-
proximate optimization problem given in Eq. 3 of the main
paper.

Input

GT

Standard

Elastic Net

Harmonization

L-1

Group-norm

Figure 7. Qualitative results based on the synthesized dataset.

B.5. Setup for calculating DiffROAR

In the main paper, we measured the DiffROAR scores
(in Sec. 5.2). DiffROAR is the difference in the predic-
tive power of datasets, with the top-k% and bottom-k% of
pixels removed by ordering the feature importance of the
model. To measure this score, we re-trained the ResNet-34
model for top-k% and bottom-k% removed datasets with
150 epochs. The training setup was the same as in Sec. B.2.
The differences in accuracy for top-k% and bottom-k% in
the test set were presented in the main paper.

B.6. Setup for comparing the robustness.

To verify the robustness of the interpretation methods, we
followed [18] to use L2 attack on top-k overlap. Here k
was selected as 40% of all the pixels. For SmoothGrad and
Sparsified-SmoothGrad, we used the sample size of 64 and
applied fp16 to attack, due to memory constraints. For cal-
culating the top-k intersection metric, we set k to be 40%
of all the pixels with non-zero attributions. The evaluation
metrics were calculated based on 500 images randomly se-
lected from the test set.

B.7. Setup for comparing the stability.

To examine the stability of the interpretation methods, we
trained two networks with the same training process but
with different initializations. Moreover, to count for the in-
fluence of training data, we randomly removed 1000 images
from the training set and replenished the same amount of
images from the test set. The metrics were calculated based
on 500 images randomly selected from the common test set
of the two runs. For calculating the top-k intersection met-

Input

Standard

Gaussian
Noise

Elastic
Net

Figure 8. Adding noise during training vs. adversarial training.

ric, we set k to be 40% of all the pixels with non-zero attri-
butions.

B.8. Experimental setup for CUB-GHA

CUB is a dataset for bird category classification. It is com-
posed of 5990 training images and 5790 test images of 200
kinds of birds. CUB-GHA further collected human gaze
data and Gaussian filter on fixation points to generate hu-
man attention maps. We resized the image to be 600× 600
and randomly cropped it to be 448 × 448 before plugging
it into an Efficientnet-B0 for classification. The remaining
settings remained the same as in Sec. B.2. For adversarial
training, the perturbation was calculated as an element-wise
multiplication of the processed attention map and the gradi-
ents. We further normalized the gradients with L2-norm to
stabilize the training process:

δ∗ = (ϵmax(A)− 2ϵA)⊙ ∇xL(fθ(x), y)
∥∇xL(fθ(x), y)∥

.

C. Additional results
C.1. Results on synthesized dataset

C.1.1 Visualization of different norm-regularization

In addition to the saliency map of the elastic net given in
the main text, we visualized the saliency maps correspond-
ing to other norm regularizations in Fig. 7. As the task is
very simple and the images are very clean, different norm
regularizations do not lead to quantitatively different visu-
alizations. However, they all show significant improvement
over standard training.

C.2. Results on ImageNette

C.2.1 Comparison with adding noise during training

Adding random noise during training also has the effect of
denoising saliency maps and producing saliency maps of
high visual quality [30]. One may think the denoising ef-
fects of adversarial training may come from adding noise

Input

True
Labels

Random
Labels

Figure 9. Explanation for a true model vs. model trained on ran-
dom labels. The true model is trained with elastic net regularized
adversarial training.

during training. To illustrate it, we compared adversarial
training with adding Gaussian noise during training. The
results are shown in Fig. 8. Although training with additive
Gaussian noise resulted in less noisy saliency maps com-
pared with standard training, it still showed much worse vi-
sual quality compared with adversarial training. This shows
adversarial perturbation indeed has effects on the sparseness
of the saliency maps.

C.2.2 Results of free adversarial training

In addition to one-step optimization and iterative optimiza-
tion, we also conducted experiments with free adversarial
training [25], which optimize the network parameter and
the adversarial perturbation simultaneously, so as to expe-
dite the training. The results are shown in Fig. 13. As the
results show, free adversarial training can also be used to
conduct norm-regularized adversarial training. However,
the visual quality is slightly lower than that of fast and it-
erative training. Hence, for interpretation purposes, fast or
iterative training is recommended.

C.2.3 Incorporation of stronger adversarial attacks

One intuitive idea that can potentially further improve the
performance of our method is through the incorporation
of stronger adversarial attacks. To see how the saliency
maps as we use more powerful attack tools, we compare the
L1-regularized adversarial training with Momentum itera-
tive fast gradient sign method (MI-FGSM) [5] and vanilla
FGSM. MI-FGSM leverages momentum-based iterative al-
gorithms to better optimize the perturbation, which is a
stronger adversarial attack technique. The results are shown
in Fig. 10. Here we showcase two examples with different
magnitudes of the attacks. Both FGSM and MI-FGSM gen-
erate saliency maps with sparseness and of pretty good vi-
sual quality. Therefore, we conclude that momentum-based
adversarial training could improve the adversarial robust-

MI-FGSM MI-FGSMFGSMFGSMInput
𝜖 = 0.01 𝜖 = 0.01𝜖 = 0.05 𝜖 = 0.05

Figure 10. Qualitative comparison between FGSM and MI-
FGSM.

Table 5. Fidelity of post-processing methods. The reported score
is the relative drop compared with base interpretation methods.

Metric ∆AOPCMoFR (%) (↓)

Steps 20 50 100

Sparsification 2.75 18.93 36.16
Sparsified-SmoothGrad 25.34 24.84 18.13

Sparse MoreauGrad 11.29 32.32 45.61

ness of the network while performing similarly on the spar-
sity of saliency maps.

C.2.4 Comparison with post-processing methods

We further illustrate the results of our proposed meth-
ods compared to the post-processing sparsification strat-
egy by measuring the fidelity of each method. We em-
ployed AOPCMoFR [23] at different steps as the fidelity mea-
sure and examined the fidelity of sparsified simple gradient,
Sparsified-Smoothgard, and Sparse Moreaugrad [42]. As
the absolute value of fidelity can be affected by the confi-
dence of the network output, it can be unfair to compare
the absolute value for different networks. We reported the
relative drop in fidelity compared with a based method.
Meanwhile, to eliminate the influence of smoothing oper-
ation [40] and to only focus on sparsification, we compared
sparsified simple gradient with simple gradient and com-
pared Sparsified-SmoothGard and Sparse Moreaugrad with
SmoothGrad. The results are summarized in Table 5. These
results suggest that post-processing methods often enforce
higher sparsity at the expense of lower fidelity. On the other
hand, our proposed in-processing scheme preserves the fi-
delity of the interpretation maps as it outputs the simple gra-
dient maps, which are the most fundamental saliency maps.

C.2.5 Integrating with post-processing methods

Our adversarial training methodology is an in-processing
scheme, which can be more faithful to the original simple
gradient map compared with the post-processing scheme.
Moreover, if we only care about the visual quality of the

saliency maps, these two techniques are orthogonal and may
have an additive effect. To illustrate this, we presented
saliency maps of other interpretation methods in addition
to simple gradient, using the network trained with adver-
sarial training. The results are shown in Fig. 14. Although
post-processing methods such as smoothing and sparsifica-
tion can significantly improve the visual quality of saliency
maps for standard training, it seems to have minor improve-
ments on Adversarial training, as the original saliency map
is already clean and sparse. Nevertheless, performing ad-
versarial training and post-processing together still produce
the most visually coherent map.

C.2.6 Sanity Check

Following [1], we conducted sanity checks to further show
our in-processing scheme could maintain the fidelity of the
interpretation maps. We performed both the model parame-
ter randomization test and the data randomization test.
Model parameter randomization test. For the model pa-
rameter randomization test, we conducted cascading ran-
domization on the ImageNette data. We computed the
SSIM scores comparing the saliency maps after the progres-
sive randomization of layers from the output layer toward
the input layer with the original saliency map (Fig. 11).
The decay trend shows the trained weight is important for
the saliency map patterns. We also visualized the saliency
maps of cascading randomization (Fig. 15). In all the cases,
the saliency maps of the networks with fully reinitialized
weights looked blank, implying no specific parts on the in-
put image play major roles in the decision of the network.
Data randomization test. In the data randomization test,
we randomly permuted all labels and retrained a network
with the noisy dataset. The numerical results are shown in
Fig. 9. We found that when using adversarial training to
train a model with random labels, the model outputs ex-
actly the same prediction disregarding the input images. As
a result, the simple gradient saliency maps are composed
of all zero values. This shows the interpretation methods
indeed try to catch the relationship between inputs and out-
puts, which is essential in the application of interpretation
methods to high-stake phenomena understanding.

C.2.7 Visualization of interpretation attacks

We further illustrated the robustness of interpretation maps
induced by adversarial training. To do so, we visualized
several examples showing the interpretation maps before
and after the attack. The results are shown in Fig. 16.
The result shows the simple gradient saliency map can be
very vulnerable to small adversarial perturbation. Although
the attacked images have no perceptible difference from the
original one, the saliency map can be pretty different. On

Figure 11. SSIM between saliency maps before and after cascad-
ing randomization on the ImageNette dataset.

Table 6. Top-k overlap (%) between gaze map and saliency
map with L2-norm-regularized adversarial training on CUB-GHA
dataset.

ϵ 0 0.1 0.5 1.0 5.0

top 5% overlap 33.42 32.92 33.52 34.22 31.83
top 10% overlap 41.81 41.11 40.89 42.05 39.84

the other hand, adversarial training can significantly im-
prove the robustness of the interpretation method.

C.3. Harmonization with gaze maps

C.3.1 Comparison with vanilla L2 regularization

Our interpretation harmonization applies a weighted L2-
norm to regularize the adversarial training. One poten-
tial baseline is to use the vanilla L2-norm to penalize the
training so that only important features will be highlighted.
Therefore, we reported the top-k overlap of saliency maps
generated with L2-norm regularized adversarial training
and the gaze map (Table 6). We also visualized the saliency
maps in Fig. 12. We discovered that vanilla L2-norm reg-
ularization cannot help align saliency maps with human at-
tention. As for complex images, neural networks make de-
cisions in a way different from human beings. The features
valued by the network can be very different from domain
experts, although these features may also be helpful. Our
interpretation harmonization strategy can narrow down the
gap, making the neural network “think” like a human.

Input

Gaze
Map

Original
Saliency

L-2 Norm
Regularization

Harmonized
Saliency

Figure 12. Qualitative comparison between L2-norm regularized
adversarial training and our harmonization strategy.

Input L-1 Group Norm Elastic Net

fast iterative free fast iterative free fast iterative free

Standard

Figure 13. Qualitative comparison of saliency maps generated by networks with different adversarial training protocols (fast, iterative,
free).

Standard Training

Adversarial Training
(elastic net)

Standard Training

Adversarial Training
(elastic net)

Standard Training

Adversarial Training
(elastic net)

Simple
Gradient

Smooth
Grad

Sparsified
Smooth

Grad

Integrated
Graient

Sparse
Moreau

Grad

GradCam

Figure 14. Integrating adversarial training and post-processing methods for generating saliency maps.

Standard

L-1 norm

group-norm

elastic net

Input

O
rigin

al Exp
lan

atio
n fc

C
o

n
v-h

ead

b
lo

ck1
5

b
lo

ck1
4

b
lo

ck1
3

b
lo

ck1
2

b
lo

ck1
1

b
lo

ck1
0

b
lo

ck9

b
lo

ck8

b
lo

ck7

b
lo

ck6

b
lo

ck5

b
lo

ck4

Cascading randomization from top to bottom layers

Figure 15. Cascading randomization on EfficientNet-B0 (ImageNette). The first column corresponds to the original explanations for the
tench. Progression from left to right indicates complete randomization of network weights. Some saliency maps look blank because the
importance scores for all pixels are uniformly small.

Original
Input

Original
Saliency

Map

Attacked
Input

Attacked
Saliency

Map

Original
Saliency

Map

Attacked
Input

Attacked
Saliency

Map

Original
Saliency

Map

Attacked
Input

Attacked
Saliency

Map

Original
Saliency

Map

Attacked
Input

Attacked
Saliency

Map

L-1 Group Norm Elastic NetStandard

Figure 16. Visualization of attacked image and attacked saliency maps.

	. Proofs
	. Proof of Observation 1
	. Proof of Proposition 2
	. Proof of Proposition 3
	. Proof of Proposition 4

	. Implementation details
	. Experimental setup for synthesized dataset
	. Setup for training ImageNette
	. Details of one-step optimization for adversarial training.
	. Details of iterative adversarial training.
	. Setup for calculating DiffROAR
	. Setup for comparing the robustness.
	. Setup for comparing the stability.
	. Experimental setup for CUB-GHA

	. Additional results
	. Results on synthesized dataset
	Visualization of different norm-regularization

	. Results on ImageNette
	Comparison with adding noise during training
	Results of free adversarial training
	Incorporation of stronger adversarial attacks
	Comparison with post-processing methods
	Integrating with post-processing methods
	Sanity Check
	Visualization of interpretation attacks

	. Harmonization with gaze maps
	Comparison with vanilla L2 regularization

