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A. Lie Theory of SE(3)

We present a brief overview of the Lie theory of SE(3) as it pertains to our method. A camera pose T 2 SE(3) can be

represented as the matrix

T =



R t

0 1

�

2 SE(3) , (13)

where R 2 SO(3) is a 3⇥ 3 rotation matrix and t 2 R
3 is a translation. The Lie group SE(3) corresponds to the Lie algebra

se(3), spanned by six basis vectors representing either infinitesimal rotations or translations along a specific axis [9]:
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That is, any transformation T 2 SE(3) can be represented as a 6-vector v =
⇥

ω u
⇤T

corresponding to the matrix

logT = ω1G1 + ω2G2 + ω3G3 + u1G4 + u2G5 + u3G6 =
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where log : SE(3) ! se(3) is the logarithmic map. In the literature, it is common to “vee” operator (·)_ to relate the matrix

logT to its vector representation v. While most authors will write
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we let log(·) implicitly denote this vectorization, in a slight abuse of notation. The matrix exponential provides the map

exp : se(3) ! SE(3). While it is common to use the analogous “hat” operator to represent T = exp(v^), we also treat

this as implied. By grouping even and odd powers in their Taylor expansions, the logarithmic and exponential maps can be

calculated in closed form [16]. The implementations we use are available in PyTorch3D [43].

An important interpretation appears when observing the equation for the exp map:

T = exp(v^) =


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and θ is given by Eq. (6). Note, the translational component in T is produced through a combination of ω and u. That is,

unlike all other Euclidean parameterizations of SE(3) considered in Table 3, the translational and rotational components are

not independent when represented in se(3). It is possible that the improved performance of se(3) is due to the coupling

of rotational and translational components in the representation. Finally, note that the logarithmic map on SO(3), i.e.

log(R) = ω, is equivalent to the axis-angle representation [16]. Therefore, the parameterization in the second row of

Table 3 is the same as so(3)⇥R
3.



B. Visualizing Loss Landscapes for Multiple Image Similarity Metrics

In Figure 7, we compare the loss landscapes of multiscale NCC (mNCC), local NCC (patch size of 13), and global NCC

(i.e. the whole image is a single patch). Loss landscapes are generated by measuring the similarity between the ground truth

X-ray and synthetic X-rays rendered at perturbations from the ground truth camera pose. Local NCC has a sharp peak at the

ground truth camera pose, however, its landscape has many local minima. In contrast, global NCC is much smoother, but has

a less defined peak. Averaging local and global NCC yields mNCC, which has both a strong peak and a smooth landscape.

mNCC Local NCC Global NCC

Figure 7. Visual comparison of mNCC, local NCC, and global NCC.

In Figure 8, we compare mNCC to the following image similarity metrics: local NCC, global NCC, gradient NCC [23],

SSIM, multiscale SSIM (mSSIM), PSNR, negative MAE, and negative MSE. For the 6 d.o.f. in a camera pose, rotational

perturbations are jointly sampled from ±1 rad and translational perturbations are jointly sampled from ±100 mm.
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Figure 8. Visualization of image-based loss landscapes. mNCC is the most amenable to gradient-based optimization.



C. Visualizing Sparse Multiscale NCC

Figure 9 visualizes the sparse patch-wise differentiable rendering procedure used to compute sparse mNCC. In DiffPose, the

camera pose of a real X-ray is estimated using a CNN. Along with the regressed pose, activations at the final convolutional

layer are stored. Visualizing these activations shows that the network mostly uses the location of bony structures (e.g. spine,

pelvis, hips, etc.) to estimate the pose. This activation map is resized to match the original X-ray and used to define a

probability distribution over the pixels in the image. For each iteration, a fixed number of patch centers are sampled from this

distribution. Specifying the patch size defines the sparse subset of pixels in the detector plane that need to be rendered. In

practice, we render 100 patches with a patch size of 13. Since we downsample real X-rays to 256⇥ 256 pixels, when using

sparse rendering, we render at most (100 · 132)/2562 ⇡ 25% of the pixels in the image. Note, this is an upper bound because

patches can overlap. For ease of visualization, we also render 750 patches with a patch size of 13. Finally, sparse mNCC

is computed by averaging the local NCC over all rendered patches and the global NCC computed all rendered pixels. Note

that sparse mNCC is a biased estimate of mNCC, and this approach is closely related to prior work that used sparse image

patches to estimate mutual information between images [58].

Real X-ray Activations 100 patches 750 patches

Figure 9. Visualization of sparse mNCC. We compute mNCC using sparse image patches rendered around anatomical structures that

drive 2D/3D registration. In our experiments, we compute sparse mNCC using 100 patches with a patch size of 13.

The accuracy and speed of sparse mNCC are provided in Table 5. In an alternative formulation of sparse mNCC, we

can ignore the distribution defined by the network’s activations and instead sample patch centers uniformly at random over

the image. We find that this strategy, which we term unbiased sparse mNCC, performs nearly as well as the original sparse

mNCC. Finally, we also compare against mNCC. While mNCC was the most accurate image similarity metric and had the

highest success rate, it is also the slowest method to compute. On average for one iteration, it is 3.5⇥ faster to render and

compute sparse mNCC with 100 patches (13⇥ 13) than mNCC over all patches. However, since sparse mNCC is a noisy

estimate of mNCC computed over all image patches, it takes more iterations to converge than standard mNCC.

Table 5. Comparison of sparse mNCC to other mNCC variants.

SMSR " mTRE (mm) # Time (s) #

Sparse mNCC 87% 0.9 ± 2.8 2.2 ± 1.2

Unbiased Sparse mNCC 86% 1.0 ± 2.4 2.1 ± 1.3

mNCC 89% 0.8 ± 2.1 3.9 ± 1.6



D. Converting Imaging System Coordinates to DiffDRR Camera Coordinates

Parsing intrinsic matrices. Intrinsic matrices provided in the DeepFluoro and Ljubljana datasets can be decomposed as
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where (fx, fy) are the focal lengths in the x- and y-directions (in units of pixels), (x0

0, y
0

0) is the camera’s principal point

(in units of pixels), (H,W ) is the height and width of the detector plane (in units of pixels), and (∆X,∆Y ) are the x- and

y-direction pixel spacings (in units of length per pixel). From these known parameters, the focal length of the X-ray scanner

(in units of length) can be expressed as

f =
fx∆X + fy∆Y

2
, (18)

and the principal point also expressed in units of length is
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The intrinsic parameters f , ∆X , ∆Y , H , W , x0, and y0 are needed to define the detector plane in DiffDRR [22].

Parsing extrinsic matrices. Extrinsic matrices in the DeepFluoro and Ljubljana datasets assume that the camera is initial-

ized at the origin and pointing in the negative z-direction. However, DiffDRR initializes the camera at (f/2, 0, 0) pointed

towards the negative x-direction. To transform a camera pose T 2 SE(3) from DeepFluoro/Ljubljana’s coordinate system

to DiffDRR’s coordinate system, we use the following conversion:

T̃ = T�1
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When passed to DiffDRR along with the scanner’s intrinsic parameters, the camera pose T̃ renders synthetic X-rays using the

same geometry as the real-world imaging system (see Figure 3). Transformations of camera poses, along with conversions

between multiple parameterizations of SO(3) and SE(3), are handled using PyTorch3D [43].

E. Derivation of the Image Formation Model

For completeness, we present a single, detailed derivation of the X-ray image formation model and preprocessing steps

described in many places throughout the main text. Let r(α) = s+ α(t� s) be a ray originating at the radiation source

s 2 R
3 and terminating at the target pixel on the detector plane t 2 R

3. We are interested in modeling the attenuation of r

as it travels through the anatomical volume V : R3 ! R. For every point x in 3D space, V(x) returns a linear attenuation

coefficient that characterizes how much intensity r loses to V when it travels through x. A large coefficient denotes that x

comprises a material that greatly attenuates r by absorbing a large amount of its intensity, while a small coefficient represents

a material that is easily penetrated. We model points in empty space as having a linear attenuation coefficient of zero. The

attenuated intensity of r after it has passed through every point on its path, as governed by the Beer-Lambert law [49], is

I(p) = I0 exp
⇣

�
Z
x2r

V(x) dx
⌘

, (22)

where I0 is the initial intensity of every X-ray radiating from s.

Instead of modeling the attenuated intensity of r, it is both equivalent and simpler to model the amount of energy absorbed

by V. To this end, we only consider the integral in Eq. (22) and model the absorption Iµ(p) = log I0 � log I(p), which is



inversely proportional to I(p). If I0 is unknown, we can estimate it by computing the maximum value over all pixels in a set

of X-rays acquired using a scanner with the consistent parameters. Then, Eq. (22) can be expressed as

Iµ(p) = log I0 � log I(p) (23)
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where, in the last step, we approximate V with a preprocessed CT volume (a voxel grid of linear attenuation coefficients

estimated from the original Hounsfield units). This approximation results in a discretization of the line integral over the voxel

grid—note the similarities between Eq. (26) and the Eq. (27). The set {α1, . . . ,αM} parameterizes all the intersections of r

with the orthogonal planes comprising the CT volume, and V[·] is an indexing operation that returns the linear attenuation

coefficient of the voxel within which a 3D point is located. Siddon’s method [47] provides a method for efficiently computing

the intersections and indexing operations in the rendering equation (27). In DiffDRR [22], Siddon’s method is reformulated

as a series of vectorized tensor operations, enabling Eq. (27) to be computed in a differentiable manner. Tangentially, one

might wonder why the length of the ray kp� sk appears in Eq. (27). Note that the SI unit of the linear attenuation coefficient

is the reciprocal meter (m−1). Therefore, multiplication by term kp� sk serves to make the absorbance Iµ(p) unit-less.

F. Additional Implementation Details

Domain randomization. Inspired by previous (non-differentiable) synthetic X-ray renderers [51], we augment the contrast

of synthetic X-rays by upweighting the attenuation of voxels in the CT scan corresponding to bone. To isolate the voxels

corresponding to bone, we segment the CT by thresholding all voxels with Hounsfield units greater than 350. Multiplying

these voxels by a bone attenuation multiplier c � 1 increases the brightness of bones relative to soft tissue. While pretraining

the encoder, we randomly sample c ⇠ Uniform[1, 10]. This domain randomization improves transfer from simulated to real

data by diversifying the appearance of synthetic X-rays. Synthetic X-rays rendered with c 2 [1, 10] are shown in Figure 10.

Figure 10. Examples of domain randomization via X-ray contrast augmentation.

Architecture. We implemented the pose regression encoder E using a ResNet18 backbone. As the rendering and pose

regression of synthetic X-rays were performed on the same device, we were limited to a maximum batch size of eight

256⇥ 256 images. This small batch size induced instability in the running estimates of mean and variance in the batch

normalization layers, leading us to replace them with group normalization layers. All encoders were trained from scratch for

each patient.

Early stopping criteria. We terminate test-time optimization early if the image similarity metric does not improve by at

least 0.05 for 20 iterations in a row.

Hardware. For each patient, pretraining the pose regression encoder was performed on a single NVIDIA RTX A6000

GPU. For each intraoperative X-ray, test-time optimization was performed a single GeForce RTX 2080 Ti GPU.



G. Additional Qualitative Results on the DeepFluoro Dataset

Ground Truth PoseNet xReg DiffDRR PnP-Regularizer DiffPose (ours)
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Figure 11. Visualizations of additional qualitative results on the DeepFluoro dataset. Fiducials projected at the ground truth camera

pose are in blue, while projections at the estimated pose are in orange. White lines are drawn between corresponding fiducials.



H. Additional Qualitative Results on the Ljubljana Dataset

The Ljubljana dataset consists of 2D/3D digital subtraction angiography (DSA) images. In 2D DSA images, a subtraction step

is used to remove the outline of the skull, attenuating the vasculature and increasing the signal-to-noise ratio [12]. In 3D DSA

images, the signal-to-noise ratio is too low to capture the smallest blood vessels [45]. Despite missing the microvasculature,

the trunks of main vasculature are sufficient to drive 2D/3D image registration with DiffPose in most cases.
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Figure 12. Visualizations of additional qualitative results on the Ljubljana dataset. mTRE is reported for each example.


	. Introduction
	. Related Work
	. Preliminaries
	. Methods
	. Training Pose Estimation Networks
	. Registration Losses
	. Test-Time Optimization
	. Landmark-Based Evaluation
	. Implementation Details

	. Experiments
	. Datasets
	. Baseline Methods
	. Results
	. Ablation Studies

	. Discussion
	. Lie Theory of SE(3)
	. Visualizing Loss Landscapes for Multiple Image Similarity Metrics
	. Visualizing Sparse Multiscale NCC
	. Converting Imaging System Coordinates to DiffDRR Camera Coordinates
	. Derivation of the Image Formation Model
	. Additional Implementation Details
	. Additional Qualitative Results on the DeepFluoro Dataset
	. Additional Qualitative Results on the Ljubljana Dataset

