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1. Training settings and hyperparameters

Since, the current approaches are not designed and opti-
mized for the small-start settings used in our work, we
adapt relevant methods and optimize them for these settings
and achieve comparable baselines to our approach. We list
the exact experimental settings to enable reproducibility.
Augmentations: As implemented in PyCIL [12], for
CIFAR-100, we use the same augmentation policy which
consists of small random transformations like contrast or
brightness changes. Similarly, for the other datasets, we use
the default set of augmentations which include random crop
and random horizontal flip. For a fair evaluation, we use the
same set augmentations for all the methods.
LwF: In CIFAR-100, TinyImageNet and ImageNet-Subset
datasets for the first task, similar to PyCIL [12], we use a
starting learning rate of 0.1, momentum of 0.9, batch size
of 128, weight decay of 5e-4 and trained for 200 epochs,
with the learning rate reduced by a factor of 10 after 60,
120, and 160 epochs, respectively. For subsequent tasks,
we used an initial learning rate of 0.05 for CIFAR-100 and
ImageNet-Subset and 0.001 for TinyImageNet. The learn-
ing rate is reduced by a factor of 10 after 45 and 90 epochs
and trained for a total of 100 epochs. We set the the temper-
ature to 2 and the regularization strength to 10 for CIFAR-
100 and TinyImageNet and 5 for ImageNet-Subset. For the
fine-grained datasets, we use a learning rate of 0.01 for the
first task and a learning rate of 0.005 for subsequent tasks.
The regularization strength is set to 20.

For the NCM classifier, SDC and our proposed method
ADC, we use the same training settings as LwF.
SDC: For SDC [11], we set the hyperparameters σ =
0.3 for CIFAR-100, TinyImagenet and for the fine-grained
datasets. For Imagenet-Subset, we set σ = 1.0.
PASS: We follow the implementation of PASS [13] from
PyCIL [12] and set λfkd = 10 and λproto = 10.
SSRE: We follow the implementation of SSRE [14] from
PyCIL [12] and set λfkd = 10 and λproto = 10.
FeTrIL: For first task, we use a learning rate of 0.1 for
CIFAR-100, TinyImageNet and ImageNet-Subset and fol-

Figure 1. The t-SNE plot demonstrates that the adversarial sam-
ples generated using our proposed method lie close to the target
old class prototype compared to the closest current task samples
(in green) and can thus be reliably used for drift estimation.

low the exact same settings as the original implementa-
tion [5]. For the fine-grained datasets, we use a learning
rate of 0.01 for the first task.
FeCAM: We use the same training setting as LwF for the
first task training. FeCAM [1] requires no training after the
first task and stores the prototypes and covariance matrices
from all the classes. Similar to the original implementation,
we use the covariance shrinkage hyperparameters of (1,1)
and the Tukey’s normalization value of 0.5.
ADC: We use a α value of 25, iterations i = 3 and number
of closest samples m = 100 for all the datasets.

2. Robustness to different class orders

In CIL, the order of classes can influence the performance
and thus we shuffle the class orders and observe how ADC
and the existing methods like LwF, NCM, SDC, FeTrIL and
FeCAM perform. While we used the seed 1993 following
previous works [4–6, 11] for the results reported in the main
paper, here we use four different seeds 0, 1, 2, 3 and report



Method T = 5 T=10
Alast Ainc Alast Ainc

LwF [3] 45.67± 1.37 62.12± 1.08 26.59± 2.44 45.60± 2.52
NCM 52.68± 0.57 65.91± 0.4 40.53± 2.74 56.21± 3.55
SDC [11] 52.26± 3.0 63.88± 1.23 40.65± 1.82 56.18± 3.0
FeTrIL [5] 45.52± 0.33 60.84± 0.46 37.0± 0.57 52.08± 0.51
FeCAM [1] 46.93± 0.34 61.49± 0.55 33.13± 0.93 48.10± 1.27

ADC (Ours) 58.12± 1.42 69.29± 1.17 45.43± 3.03 59.59± 4.11

Table 1. Evaluation of EFCIL methods with mean and standard deviation using 5 random seeds for CIFAR-100. Best results in bold and
second best results are underlined.

Method T = 5 T=10
Alast Ainc Alast Ainc

LwF [3] 39.03± 0.43 50.96± 0.93 27.75± 0.51 40.04± 0.96
NCM 38.76± 0.18 51.74± 0.8 28.07± 0.97 42.86± 0.98
SDC [11] 40.28± 0.37 52.21± 0.89 28.15± 0.67 42.09± 1.03
FeTrIL [5] 29.94± 0.83 45.08± 0.98 23.6± 0.42 37.41± 0.63
FeCAM [1] 26.03± 0.49 41.11± 0.93 23.78± 0.48 37.30± 1.23

ADC (Ours) 41.29± 0.47 52.36± 0.95 32.68± 0.43 44.89± 1.03

Table 2. Evaluation of EFCIL methods with mean and standard deviation using 5 random seeds for TinyImageNet. Best results in bold
and second best results are underlined.

Method T = 5 T=10
Alast Ainc Alast Ainc

LwF [3] 49.16± 1.34 68.88± 0.74 34.18± 3.69 57.96± 3.64
NCM 56.80± 1.90 72.45± 0.87 44.04± 1.93 64.43± 0.43
SDC [11] 59.62± 1.56 74.44± 0.76 42.68± 1.88 65.26± 0.59
FeTrIL [5] 50.52± 1.06 65.64± 0.95 40.74± 0.50 56.34± 0.76
FeCAM [1] 53.83± 0.46 67.88± 0.67 42.46± 0.89 57.93± 1.45

ADC (Ours) 61.62± 0.93 75.29± 0.61 47.62± 1.55 67.03± 0.46

Table 3. Evaluation of EFCIL methods with mean and standard deviation using 5 random seeds for ImageNet-Subset. Best results in bold
and second best results are underlined.

the mean and standard deviation using these 5 seeds for both
the last task accuracy Alast and the average incremental ac-
curacy Ainc in Tabs. 1 to 3. The proposed method ADC
outperforms SDC and NCM consistently across all settings
on CIFAR-100, TinyImageNet and ImageNet-Subset. This
demonstrates the robustness of ADC which improves over
the existing methods irrespective of the class order.

3. Perturbation guarantee
We specifically select the closest samples to each old proto-
type, one at a time (see Algorithm 1) to ensure we generate
adversarial samples for all the old classes. On CIFAR100
(T=10), we get an average of 59 samples out of 100, which
are successfully perturbed for all old classes after the last
task. While performing 5 iterations (instead of 3) generates

an average of 69 successful perturbations for old classes,
this does not lead to a significant accuracy change (Tab. 3a).
Therefore, we have used 3 iterations in our implementation.

We analyze the position of the closest current task sam-
ples and the generated adversarial samples with respect to
a target old class prototype in the old feature space using a
t-SNE plot in Fig. 1. We observe that the adversarial sam-
ples lie close to the prototype, while the original samples
are distant from the prototype. This validates the effective-
ness of the adversarial attack in the old feature space and
shows how new samples obtained using targeted adversarial
attacks can be used to represent old classes. These adver-
sarial samples behave as pseudo-exemplars and can now be
used to estimate the drift of prototypes from the old to the
new feature space.



4. Prompt-based Methods

Prompt-based methods [7, 9, 10] aim to learn prompt pa-
rameters that can be used with frozen pre-trained mod-
els without updating the parameters of the model. A re-
cent work, HiDe-Prompt [8] also freezes the pre-trained
ViT backbones and proposes an ensemble strategy for us-
ing prompts. Different from them, our objective is to con-
tinually learn new representations and update the backbone
at every task. These methods have static features due to
the frozen backbone and avoid the feature drift problem we
are tackling. We think it is unfair to compare the perfor-
mance of frozen pre-trained models with our method (train-
ing from scratch and updating the backbone). While freez-
ing pre-trained models works well for mainstream datasets,
it is crucial to update the backbone and learn new repre-
sentations for training domain-specific models for data that
are not commonly seen in pre-trained data, and thus it is
necessary to develop drift compensation methods. Janson
et al. [2] show that while pre-trained models with a simple
NCM baseline work similar to L2P on Cifar100, they strug-
gle on ImageNet-R with data of different styles like cartoon,
graffiti, and origami.

5. Visualization of adversarial images

We visualize the original and adversarially perturbed im-
ages and the corresponding perturbations for CIFAR-100
and TinyImageNet in Fig. 2 and Fig. 3. We observe that
the perturbations are perceptible in most of the adversarial
images generated from low-resolution images of CIFAR-
100 and TinyImageNet while for ImageNet-Subset, CUB-
200 and Stanford Cars having high-resolution images of
224x224, the perturbations are not perceptible.
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(a) Original image (b) Adversarial perturbation (c) Adversarial image

Figure 2. Visualization of image, perturbation and the corresponding adversarial image for some samples from CIFAR-100.



(a) Original image (b) Adversarial perturbation (c) Adversarial image

Figure 3. Visualization of image, perturbation and the corresponding adversarial image for some samples from TinyImageNet.
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