
Appendix

A. Scaling curves for average performance
across 18 tasks

In Figure 4 we showed the obtained scaling curves for each
of the data pools, with ImageNet as the downstream per-
formance metric. We share similar curves for each of the
data pool, with average performance across 18 tasks as the
downstream performance metric, in Figure 7.

Finally, Figure 8 shows the estimated scaling curves for
different data pool mixtures, for average prformance across
18 tasks as the downstream performance metric.

B. Downstream Evaluation Datasets and Met-
rics

Following prior work [37, 45], we evaluate our models
on a variety of image classification and retrieval datasets
to assess their zero-shot capabilities. While the Data-
comp [14] benchmark averages performance across 38 dif-
ferent datasets, we use a subset of 18 such datasets where
medium-scale models give better than random performance
in order to be able to develop reliable scaling laws. More
specifically, we select the following datasets:
1. ImageNet: a 1000-class image classification chal-

lenge [40].
2. ImageNet-OOD: Six associated Imagenet distribu-

tion shifts—ImageNet-V2 [39], ImageNet-R [19],
ImageNet-A [18], ImageNet-Sketch [44], ImageNet-
O [18], and ObjectNet [4].

3. VTAB: 6 out of 12 datasets from the Visual Task Adap-
tation Benchmark [49], including Caltech-101 [13], CI-
FAR10 [28], CIFAR100 [28], Oxford Flowers-102 [34],
Oxford-IIIT Pets [35], and RESISC45 [8].

4. Additional classification datasets: Food-101 Bossard
et al. [5], Pascal VOC 2007 [10], and Stanford Cars [27].

5. Retrieval: 2 retrieval tasks of MSCOCO [7] and
Flickr [47].
Most of the evaluation datasets constitute image-

classification tasks. We use the ‘Accuracy metric’ to eval-
uate the zero-shot performance of the model on these
datasets. The only exceptions include:
1. VTAB: We report ‘Mean per Class Recall’ for Caltech-

101 [13], Oxford Flowers-102 [34], Oxford-IIIT
Pets [35] datasets. This follows the standard evaluation
protocol in past benchmarks [14] and is done because of
the large number of classes in these datasets.

2. Retrieval: For all the retrieval datasets we report the
‘Mean Recall @ 1’ which tells how probable is it for the
top-recall entry to be relevant.

C. Scaling curves with CLIP Score as the Data
Quality Metric

We share the scaling curves for data pools based on the
CLIP score in Figure 9. Similar to the trends observed in
§ 5, we note that the magnitude of data quality parameter
(b) decreases as we go towards worse pools.

D. Pareto data filtering for T-MARS
Figure 10 shows the variation in optimal data filtering strat-
egy for T-MARS as the compute is scaled from 32M to
640M.

E. Finding the Optimal Scaling Parameters
Optimizing scaling parameters is a critical step in the val-
idation of any scaling laws, particularly when these mod-
els are subjected to scaling laws that govern their behav-
ior across different magnitudes of computation. This pro-
cess, however, is fraught with challenges, primarily due to
the sensitive nature of the optimization landscape, which is
characterized by numerous local minima and a complex ob-
jective function.

E.1. Challenges in Parameter Optimization
In our initial approach to optimizing for the scaling param-
eters like a, b, c, ⌧ we employed optimization libraries such
as SciPy to find the best fit on the training points. Despite
their widespread use, these methods often result in insta-
bility and inefficiency in the fitting process, especially be-
ing sensitive to initialization. The primary reason for this
instability is the high sensitivity of the optimization prob-
lem, where slight variations in parameters can lead to sig-
nificantly different outcomes, and at the same time, the ex-
istence of many solutions that fit the curve very well. As a
remedy to this, we developed optimization methods ranging
from gradient-based optimization to custom-built optimiz-
ers. In all of these approaches, we found that we could at-
tain solutions that (a) had very high loss on the data points
being optimized over; and (b) conversely, had a low loss on
the points it was trying to minimize, but high loss on the
points being extrapolated (mixture of data buckets). This
was a rather unsatisfactory, because we should find scaling
parameters without peeking at the points to extrapolate to.

E.2. Grid Search as a Stable Solution
Given the limitations of conventional optimization meth-
ods, our work advocates for the use of grid search as a more
stable and reliable method for determining optimal scaling
parameters. Grid search, unlike heuristic or gradient-based
optimization methods, systematically explores a specified
parameter space, evaluating the performance of each pa-
rameter combination to identify the one that yields the best



Figure 7. Scaling curves with repeated data for visual-language models: We share the scaling curves for T-MARS based data pools, with
average zeroshot performance across 18 tasks as the downstream performance metric.

Figure 8. Estimated Scaling curves for different data pool mixtures
(data pools based on T-MARS scores). Again, we observe that
highly aggressive filtering performs the best at low compute, while
moderate filtering is better at higher computes.

results. This exhaustive search process is especially advan-
tageous in the context of scaling parameter optimization,
where the landscape is sensitive to initialization. This ap-
proach mitigates the risk of overlooking optimal parame-
ters due to the presence of local minima or the complexi-
ties of the objective function. Furthermore, grid search fa-
cilitates a reproducible parameter fitting process, enabling a
clearer understanding of how different parameters influence
the model’s performance.

E.3. A view of the loss grid
We perform a gridsearch for the normalizer a 2 [0.001, 1],
data utility parameter b 2 [�0.005,�0.5], repetition param-
eter ⌧ 2 [1, 50] and d 2 [0.01, 0.02, 0.05, 0.10, 0.2]. These
grids were converged upon by continuously expanding the
grid limits till the estimated optimal parameters for all the
data pools lied in between the grid.

E.4. Finding normalizing constant a
Recall from § 4.2 that a refers to the normalizer term in the
scaling equation which is kept constant across the pools.



Figure 9. Scaling curves for data pools based on CLIP score:

Figure 10. We modify the state of the art data curation approach
T-MARS by changing the filtering threshold after ranking the data
by their metric. While the original paper proposed retaining 30%
of the data, our results show that depending on the ratio of compute
to data pool size, we must adaptively make the filtering less (or
more) aggressive to account for the diminishing utility of good
data with repetitions. Results are presented on an average of 18
visual understanding tasks with a global data pool size of 128M
samples, and varying compute scales.

We learn a by performing a gridsearch over 100 possible
values of a 2 [0, 1], and choosing the one which minimizes
the combined loss across all the data quality pools. While
we fix a to be same across the pools, we let b and ⌧ to vary.
Figure 11 shows the loss surface as we jointly optimize for
a over data pools. We observe a well behaved loss surface
over the gridsearch range, giving an optimal a value.

Figure 11. Loss surface as we jointly optimize for a over the data
pools. There exists a well-defined minima over our chosen grid-
search range for a.

E.5. Learning the data repetition parameter ⌧

Recall from § 5 that we learnt different data repetition pa-
rameter (which denotes data diversity) ⌧ for each of the data
pools. One could alternatively chose to have the same di-
versity parameter across the pools, assuming that diversity
varies uniformly in the web data. However, as shown in
Figure 12, learning a same ⌧ value for all the buckets gives
a much worse (high) L2 fitting error compared to learning
different values for each of the pool (see the horizontal dot-
ted curve).

F. What is the Axiom of Scaling?
Scaling laws have been studied for a while, especially when
considering the scaling of large language models with in-
creasing amounts of data [21, 26]. Since these formulations
have abstracted away the ‘per-sample’ nature of scaling to
the general formulation of the form y = n

b, it remains an
open question to determine what is the actual ‘axiom’ of
scaling. The answer to this question becomes extremely im-



Figure 12. Keeping the data diversity parameter (⌧ ) different
across the pools is necessary for good scaling curve fitting. Keep-
ing the ⌧ value same across the pools give a much worse (higher)
L2 fitting loss compared to using different for each pool (see the
horizontal dotted line).

portant in enabling us to study the dynamics of a mixture
of data buckets of differing utilities, and that too, in an en-
vironment where the utility of data is constantly diminish-
ing. In this section, we sequentially consider three different
‘axioms’ of scaling. We consider three different formula-
tions that can potentially explain the sample level dynamics
of scaling laws—(i) first, we assume that the derivative of
the original scaling laws hold universally true, in our utility
based formulation; (ii) second we consider the formulation
that considers the effective data in the system at any point
but considers the utility of data to be constant, as in Muen-
nighoff et al. [32]; (iii) and finally a formulation that mod-
els the decay of data and utility simultaneously. In each of
the discussions, we begin with certain assumptions, and ex-
amine if those assumptions hold at the event of a mixture
of data buckets, that is, starting from an axiom, can we get
back to that to predict the system loss in a mixture of data
buckets.

F.1. Utility Based Decay

We begin with our first scaling law formulation that mod-
els only the instantaneous system state and not the global
state. The intuition behind such a setup is that it allows the
mixing of different buckets naturally by calculating the in-
stantaneous change in the loss by training on any sample
from any data bucket. Assume that 5 represents the axiom
of scaling of loss with data seen.

dy

dn
=

y(n)

n
b (5)

The above can be thought of as the derivative of the
more generally recognized scaling law y = n

b. Then, re-
arranging we have that,

dy

y
=

dn

n
b (6)

) Assume that ‘b’ utility term is a constant for a given
region of the training curve. Then, between two such points
in the state where we have seen n1, n2 samples respectively,

Z y2

y1

dy

y
=

Z n2

n1

dn

n
b

log
y2

y1
= b log n2 � b log n1

log
y2

y1
= b log

n2

n1
(7)

Given a single data bucket, the assumption that ‘b’ is
constant, should for instance, hold true during a given
epoch. This gives us the following closed form relation-
ship between loss values after seeing n1, n2 samples respec-
tively.

y2 = y1

✓
n2

n1

◆b

(8)

The closed-form solution for the rate of decay or loss,
yk, between training epochs is given by:

yk = y1

✓
n2

n1

◆b2 ✓
n3

n2

◆b3

· · ·
✓

nk

nk�1

◆bk

(9)

Where y1 is the loss at the end of the first epoch, and

yk = n
b1
1

kY

j=2

✓
nj

nj�1

◆bj

.

The scaling term b is assumed to be a constant for a given
region of the training curve. For example, during a given
epoch, the relationship between y2 and y1 is given by y2 =

y1

⇣
n2
n1

⌘b
.

F.1.1 Decay of the utility parameter

Now, let us move into the paradigm of repeated epochs. We
ask the question, how do we model the change in utility of
a bucket as we see the dame data point multiple times. We
assume that the utility parameter b decays exponentially at
every epoch at a constant factor �. This means that,

b
(k) = b

(1)
�
k�1

.



F.1.2 Estimating Data Mixtures under Utility-based
decay

Now that we have established the basic laws for the sys-
tem state under the scaling laws modeling utility-based de-
cay, let us examine how these assumptions play together
in a setup of a mixture of buckets. For simplicity, when-
ever we consider a system with multiple data buckets, we
will assume that the data points from these buckets are cy-
cled alternately. Let us assume that we are at a given sys-
tem state where the model loss and samples seen are deter-
mined by (y0, n0) respectively. Assume two data buckets
parametrized by (b1, �1) and (b2, �2) as their respective ini-
tial utility, and utility decay rates. Let us first sample a data
point from bucket 1, and then from bucket 2. Assume that
the loss after seeing a single sample from the two buckets is
y1, y2 respectively. Using the relationship in Equation 8:

y1

y0
=

✓
n0 + 1

n0

◆b1

=

✓
1 +

1

n0

◆b1

y2

y1
=

✓
n0 + 2

n0 + 1

◆b2

=

✓
1 +

1

n0 + 1

◆b2

Using Taylor expansion and ignoring higher order term
assuming that n0 � 1, we can write the above as:

y2

y0
=

✓
1 +

1

n0

◆b1 ✓
1 +

1

n0 + 1

◆b2

⇡
✓
1 +

1

n0

◆b1 ✓
1 +

1

n0

◆b2

=

✓
1 +

1

n0

◆b1+b2

Let us assume that the effective utility of the mixture of
data buckets is beff. Then, in the same steps between y0 and
y2, we can write:

y2

y0
=

✓
1 +

2

n0

◆beff

Since the two formulations should be equivalent, we
have that

beff =
b1 + b2

2

This gives us a way to estimate the effective utility of the
mixture of data buckets at any given epoch k of training as,

b
(k)
eff =

b1�
k�1
1 + b2�

k�1
2

2

As we move into the next formulation, let us highlight
that the key challenge behind the validity of this formulation

is the initial axiom we assumed. We assume that the system
is determined by instantaneous interactions where the effec-
tive number of samples seen is constant, independent of the
number of times it has been seen before, and only its utility
decreases every time.

F.2. Effective Data Based Formulation

Let us now consider a formulation that only accounts for the
‘effective data’ in the system to predict the loss of the model
on seeing ‘n’ samples. The central assumption behind this
formulation is that the ‘utility’ of data itself does not decay,
and stays constant throughout the training process, rather
only the effective data in the system decays. This is the for-
mulation that has been considered in the past by Muen-
nighoff et al. [32]. Let us consider that the ‘axiom’ of scal-
ing law is now represented by the following equation:

y = n
b
eff,

neff = ⌘(1 + � + �
2 + · · ·+ �

k�2) + ��
k�1

(10)

where ⌘ represents the number of unique samples in the
training data, � represents the rate of decay of effective data
when seeing a repeated epoch of the data, and � < ⌘ repre-
sents the number of examples seen in the current epoch of
training. This suggests that at a given system state, dneff =
�
k�1

dn

dy

dneff
= b

y(neff)

neff
dneff

dn
= �

k�1

Note that since the system state has a fixed utility value
throughout training, we can use the formulation from Equa-
tion 8 in terms of neff as follows:

y2 = y1

✓
neff2

neff1

◆b

F.2.1 Estimating Data Mixtures under Effective Data-
based decay

Let us now consider the case where we have a mixture of
data buckets, and we are trying to estimate loss of the sys-
tem characterized by the mixture of data buckets. As be-
fore, let us assume that we are at a given system state where
the model loss and samples seen are determined by (y0, n0)
respectively. Assume two data buckets parametrized by
(⌘1, �1) and (⌘2, �2) as their respective initial effective data,
and effective data decay rates. Let us first sample a data
point from bucket 1, and then from bucket 2. For simplicity,
we will consider the case of training on the second epoch of



data:

y1

y0
=

✓
n0 + �1

n0

◆b1

=

✓
1 +

�1

n0

◆b1

y2

y1
=

✓
n0 + �1 + �2

n0 + �1

◆b2

=

✓
1 +

�2

n0 + �1

◆b2

y2

y0
=

✓
1 +

�1

n0

◆b1 ✓
1 +

�2

n0 + �1

◆b2

⇡
✓
1 +

�1

n0

◆b1 ✓
1 +

�2

n0

◆b2

=

✓
1 +

�1

n0

◆b1 ✓
1 +

�2

n0

◆b2

By Taylor expansion, and keeping only the first order
terms, in the expansion of (1 + x)a for very small x, we
have that (1 + x)a ⇡ 1 + ax. This gives us that,

y2

y0
⇡

✓
1 +

�1

n0

◆b1 ✓
1 +

�2

n0

◆b2

⇡
✓
1 +

�1

n0
b1

◆✓
1 +

�2

n0
b2

◆

⇡ 1 +
�1b1 + �2b2

n0

But, we know that this should be equivalent to the for-
mulation where we consider a fixed utility of data through-
out training, given by beff.

y2

y0
=

✓
1 +

�1 + �2

n0

◆beff

Since the two formulations should be equivalent, we
have that

beff =
�1b1 + �2b2

�1 + �2

Notice that in the final formulation, beff is a weighted av-
erage of the utility of the data in the two buckets, with the
weights being the effective data in the system at the time
of training. However, this contradicts our initial assumption
that it is only the data that decays in the system, and the util-
ity stays constant. While the utility does not ‘decay’, it does
get re-weighted as the effective data in the system changes.
This is a key insight that we gain from this analysis, which
requires us to consider the change in both the effective data
and the utility of data in the system. Note that these results
still do not violate the formulation proposed in the work of
Muennighoff et al. [32], because they consider data to come
from a single bucket. This means that beff = �1b1/�1 = b1.
However, in the case of a mixture of data buckets, the util-
ity of data in the system is a weighted average of the utility
of data in the individual buckets.

An alternate paradigm in which such an equation may
work is when the rate of decay (�) associated with all buck-
ets is the same. However, we find that adding the constraint
of fixed decay factor between all buckets leads to signifi-
cantly higher loss even on the points to be fit for scaling law,
let alone the extrapolation points.

F.3. Decaying Effective Data with changing Utility

Based on the insights from the previous two formulations,
we now consider a formulation that models the decay of
both the utility of data and the effective data in the system.
It is clear from the previous part that we need a formulation
where we can model the instantaneous utility of data in or-
der to be able to mix different data buckets. The key dif-
ference from the formulation based on only utility decay is
that we consider that there is a decay factor associated with
the effective number of samples in the system. Let us first
rewrite the instantaneous system state in terms of the effec-
tive data and utility of data as follows:

dy

dneff
=

y(neff)

neff
b,

dneff

dn
= �

k�1

(11)

From the formulation in the previous part in Sec-
tion F.2.1, it then follows that,

b
(k)
eff =

b1�
k�1
1 + b2�

k�1
2

�
k�1
1 + �

k�1
2

,

where b(k)eff is the effective utility of the mixture of data buck-
ets at any given epoch k of training.

Using the above, we can consider the closed form solu-
tion for the loss of the system at any given epoch k of train-
ing as a product of the loss at the end of the first epoch,
and the ratio of the effective data seen at the end of the kth
epoch to the power effective utility.

yk = y1

✓
neff2

neff1

◆b(2)eff
✓
neff3

neff2

◆b(3)eff

· · ·
✓

neffk

neff(k-1)

◆b(k)
eff

yk = y1

kY

j=2

✓
neffj

neff(j-1)

◆b(j)eff

F.3.1 Estimating Data Mixtures under Decaying Effec-
tive Data with changing Utility

We will directly use the data mixing results from F.2.1 to es-
timate the loss of the system at any given epoch k of train-
ing. Note that this is governed under the assumptions of ex-
ponential decay of data with repetitions.



F.4. Equivalence of Formulations A and C
We will now show that under certain conditions, the decay
of data and utility, and the decay of just utility reduce to the
same formulation. Let us consider the case where the decay
factor of the effective data is the same as the decay factor
of the utility of data. Consider two buckets parametrized by
(b1, �) and (b2, �) as their respective utility and decay factor.
We will now study the ratio of the two losses after seeing
a single sample from the two buckets. Once again assume
that the initial system state is characterized by (y0, n0). For
simplicity, we will consider the case of training on the sec-
ond epoch of data:

Effecttive Utility Formulation Recall that

beff =
b1�

k�1 + b2�
k�1

2
.

Then, we can write the loss after seeing a single sample as:

y1

y0
=

✓
1 +

1

n0

◆beff

=

✓
1 +

1

n0

◆ b1�1+b2�2
2

⇡
✓
1 +

1

n0

◆ b1�1+b2�2
2

⇡
✓
1 +

b1�1 + b2�2

2n0

◆

Effective Data, Dynamic Utility Based Formulation In
this case, the

beff =
�1b1 + �2b2

�1 + �2

�eff =
�1 + �2

2

Then, we can write the loss after seeing a single sample
from the two buckets as:

y1

y0
=

✓
1 +

�eff

n0

◆beff

=

✓
1 +

�1 + �2

2n0

◆ �1b1+�2b2
�1+�2

⇡
✓
1 +

�1b1 + �2b2

2n0

◆

Notice that, under the Taylor approximation, and as-
sumption that n0 � 1, the two formulations are equivalent.

This suggests that under the assumption that the decay fac-
tor of the effective data is the same as the decay factor of the
utility of data, the two formulations reduce to the same for-
mulation. This is a key insight that we gain from this analy-
sis, which requires us to consider the change in both the ef-
fective data and the utility of data in the system. Note that
these results still do not violate the formulation proposed
in the work of Muennighoff et al. [32], because they con-
sider data to come from a single bucket. This means that
beff = �1b1/�1 = b1. However, in the case of a mixture of
data buckets, the utility of data in the system is a weighted
average of the utility of data in the individual buckets.

G. Rate of Repetition Decay
Conventionally scaling laws have been studied in the con-
text of language models [21, 26]. To the best of our knowl-
edge, the only large scale attempt at predicting scaling of vi-
sion language models was done in the work of Cherti et al.
[9]. However, the extrapolated graphs in their work showed
large errors as compared to the actual performance of the
models. Hence, the scaling of vision language models is
still an open question, especially when trained under con-
trastive loss.

Challenge: Squared Contrastive Pairs This is a funda-
mentally new challenge because in a data pool of N sam-
ples, there exist N2 pairs of comparisons that contribute
to the loss. In such a setting, should the utility of a data
pool still diminish exponentially after seeing N samples, or
should it diminish after seeing N

2 pairs? This is a funda-
mental question that we address in this section.

The contrastive loss for any given batch of data can be
given by the following equation:

L = � log
`((xi, ti))PB�1
k=1 `(xi, tk)

, (12)

where B is the batch size, and ` is some loss function based
on the cosine similarity between the embeddings of the im-
age and the text. xi and ti are the image and text embed-
dings of the ith sample in the batch. The goal is to maxi-
mize the similarity between the image and text embeddings
of the same sample, and minimize the similarity between
the embeddings of different samples. We can decompose
the loss into the numerator and the denominator. In a given
batch, there are a total of B samples seen in the numerator,
and B⇥ (B� 1) samples seen in the denominator. We will
call this B ⇥B for simplicity.

Let us assume that the training set up uses a batch size of
B for contrastive learning. Given a dataset of N samples,
the number of batches seen in a single epoch is given by
N
B . Therefore, the total number of comparisions seen in the
denominator in a single epoch is given by N ⇥B.



Figure 13. Loss surface as we find the best rate of decay of utility
as a function of Nk.

Utility Decay Assumption We assume that the utility de-
cays exponentially, however, only after seeing each unique
comparison in the dataset. For a data pool of N samples,
while conventionally such a decay event would happen ev-
ery epoch after seeing N samples, in the case of contrastive
learning, this decay event should happen after seeing N

2

pairs of samples. This means that the number of epochs af-
ter which the utility of the data pool decays should be given
by N2

N⇥B = N
B .

Decay formulation Let us assume that �g is the gold rate
of decay after seeing N

2 samples. Since the modeling till
now was done based on utility decay per epoch, we can
write a relationship between the gold rate of decay and the
rate of decay after seeing N samples as follows:

�g = �
N/B =

1

2

N/B⌧

Finding decay value on merging data buckets When we
merge data buckets, a unique phenomenon happens. The
overall pool size increases. While in the conventional lan-
guage modeling paradigm this may not have a significant
impact, in the case of contrastive learning, this changes de-
cay rate because the number of comparisons in the denomi-
nator increase at the squared rate of total samples. Using �g

we can find the new value of ⌧̂ as follows:

�g =
1

2

N/B⌧

=
1

2

N̂/B⌧̂

⌧̂ =
N̂

N
⌧

Hence, ⌧p = p⌧ when merging p different buckets of a
given size.

Finding the best decay rate In the above discussion, we
assumed that the rate of decay should happen after seeing

N
2 pairs of samples. However, this is an assumption that

we made. To test how this empirically holds with respect to
different rates of change in N we allow for the flexibility of
⌧p = p

k
⌧ . Then we run an estimation analysis, at various

values of k as in Figure 13 to find the best value of k that
minimizes the loss on the data points to be fit. We notice
that the results of the theoretically derived relationship ex-
actly match the empirically determined value of minimum
loss at k = 1. Hence, for the purposes of all the merging ex-
periments, we use ⌧p = p⌧ as the rate of decay of utility of
data in the system when merging p different data buckets.


