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In this supplementary material, we include further details
about the discrepancies in the TubeR [22] authors’ public
code release (Sec. A) and additional experiments and details
(Sec. B).

A. Discrepancies in official TubeR code

A.1. Attempt to reproduce TubeR training

In order to make fair comparisons to TubeR, we attempted
to train a model following the instructions in the authors’
public code release.

Firstly, in order to be able to run the code, we needed
to fix some programming bugs as pointed out in a Github
issue.

Once these fixes were applied, we were able to run the
code. However, the performance on AVA after just a few
epochs was poor, as shown below in Tab. A1.

Table A1. Initial attempt at running public TubeR training code
on AVA. The results are poor as the public code does not load
pretrained weights into the backbone by default.

Epochs 1 3

mAP 1.43 1.98

Looking further into the configuration files
provided by the authors, we noticed that,
MODEL.PRETRAINED = False, meaning that weights
from the backbone were not being loaded, as shown here.

By modifying the configuration file to load the pretrained
weights of the backbone, the performance did improve. But
after training completed, the results were far from what was
expected, as shown in Tab. A2. Concretely, we obtained a
final mAP of 19.9, when we expected to achieve 31.1.

We have contacted the authors regarding this issue, and
have not received any response. As a result, we were not
able to use the public TubeR training code for performing
fair comparisons to it, and had to use our reimplementation
of it in our training framework.

Finally, note that TubeR achieve their best results with a
“Long-Term Context” module adapted from Wu et al. [19].
However, this part is not included in their public code re-
lease at all.

We are committed to releasing full training code on ac-
ceptance of our paper.

A.2. DETR pretraining

The public release of TubeR initialises the decoder part of
the network using DETR pretrained weights, as shown here.
However, this fact was not mentioned in the paper at all.

We have contacted the authors to ask what pretraining
data was used here, but they have not responded. However,
based on Github issues [1] and [2], we have inferred that the
DETR was in fact pretrained on COCO.

We are not aware of any other work on AVA that has used
object detection pretraining, and this initialisation therefore
makes TubeR not fairly comparable to other works in the
literature.

Our Tubelet decoder (Section 3.2) is randomly ini-
tialised, and does not make use of additional data unlike
TubeR.

A.3. Unclear if TubeR actually predicts tubelets on
AVA

Reading through the public TubeR code, we noticed that the
model is specialised according to the dataset (for example
[1, 2, 3]). In particular, when training on AVA, the dimen-
sionality of the queries, q ∈ RS×d where S is the number
of spatial queries, as shown here. On other datasets like
UCF101, q ∈ RT×S×d where T is the temporal dimension,
as shown here. This suggests that TubeR does not predict
tubelets on the AVA dataset, but rather just bounding boxes
at the centre keyframe. However, Figure 5 of the TubeR
paper [22] implies that tubelets are predicted.

We have contacted the authors to clarify the aforemen-
tioned details, but they have not responded.

In contrast, we do not instantiate our model differently
for each dataset. And our model predicts tubelets even if we
have only sparse keyframe supervision. This was demon-
strated in Table 4 of the main paper (where we performed
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Table A2. Results of running the TubeR authors’ public training code on AVA, with the necessary bug-fixes and corrections as described
in the text. The final accuracy is still, however, much lower than expected (mAP of 19.9, compared to the expected 31.1). As a result, we
could not build upon the public TubeR code-base, and use it to make fair comparisons to TubeR.

Epoch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

mAP 11.28 15.08 17.77 18.50 18.81 19.59 20.34 20.98 21.00 20.43 20.94 21.77 20.76 20.03 20.35 20.42 21.14 20.79 20.39 19.91
Expected mAP 31.10

Table A3. Comparison of computational cost to representative
methods on the AVA dataset. TubeR [22] and Co-finetuning [3],
which use external LTC and person detector modules, do not report
FLOPs and parameters of these extra modules, like other two-stage
approaches. As shown in the first row, the cost of the person detec-
tor (Faster-RCNN with ResNeXt-101 FPN) used in [2, 3, 7, 8, 17–
20] is significant, as it can be more than the action localisation
model itself.

Model AVA Total GFLOPs Params (106)

Person detector – 756.1 122.2

TubeR [22] 31.1 240 90.1
TubeR with LTC [22] 33.6 240 + LTC 90.1 + LTC
Co-finetuning [3] 36.1 4738 + person detector 431 + detector
InternVideo [18] 41.0 – –

STAR/B 4 frames 32.3 168 126.8
STAR/B 8 frames 33.1 336 126.8
STAR/B 16 frames 34.3 672 126.8
STAR/B 32 frames 36.3 1345 126.8
STAR/L 32 frames 41.7 5669 417.1

weakly-supervised tubelet detection), and by visualisations
of our results on AVA in the attached supplementary video.

B. Additional experiments

B.1. Computational Cost

Fairly comparing the computational cost of state-of-the-art
models is difficult:

TubeR [22] achieve their best results using a “Long-term
context” (LTC) module from Wu et al. [19], which first pre-
computes a “Long-term feature bank” [19] from the entire
video clip. The TubeR paper [22] provides no details about
how the “Long-term feature bank” is computed (and their
public code does not include this module either). However,
the original paper [19] on the AVA dataset, precomputed
features over the entire 15 minute video, to supplement the
2.5 second clip that was processed by the model. There-
fore, one can assume that TubeR’s LTC module adds orders
of magnitude additional computation.

Moreover, all of the two-stage methods in Table 9 use an
additional person detector for proposals. However, they do
not report the computation cost of it at all. We analysed the
cost of the Faster R-CNN with ResNeXt-101-FPN [12, 15]
person-detector used in [2, 3, 7, 8, 17–20], and observed
that it is actually more costly than many action detection
models itself, as shown in Tab. A3.

In addition, some papers, such as InternVideo [18], do
not report compute metrics either.

Table A3 shows that we can trade-off speed and accu-
racy by varying the number of input frames. Notably, with
4 frames at 320p resolution, STAR with a ViViT-Base back-
bone uses the least GFLOPs and outperforms TubeR with-
out LTC (the only variant of TubeR for which we know
the total GFLOPs). Moreover, STAR/B with 16 frames
uses less GFLOPs and parameters than the person detector
used by existing two-stage action localisation algorithms.
STAR/B with 32 frames also outperforms Arnab et al. [3]
with less than 25% of the total GFLOPs.

B.2. Implementation details

We exhaustively list hyperparameter choices for the models
used in our state-of-the-art comparisons in Tab. A4 and A5.

Note that our model hyperparameters in Tab. A4 fol-
low the same nomenclature from ViT [6] and ViViT [1] for
defining “Base” and “Large” variants.

Our experiments use similar data pre-processing and
augmentations as prior work [8, 19, 20], such as horizon-
tal flipping, colour jittering (consistently across all frames
of the video) and box jittering. In addition, we used a
novel keyframe “decentering” augmentation (Sec. B.5) as
our model predicts tubelets, and more aggressive scale aug-
mentation (Sec. B.6).

We train with synchronous SGD and a cosine learning
rate decay schedule. As shown in Tab. A5, we typically
use the same training hyperparameters across experiments.
Note that for the JHMDB dataset, we use T = 40 frames as
input to our model, as this is sufficient to cover the longest
video clips in this dataset. We also do not need to per-
form “decentering” (Sec. B.5) for datasets with full tube
annotations (UCF101-24 and JHMDB51-21). As shown in
Tab. A4, we found it beneficial to use a lower learning rate
for the vision encoder of our model, as it was already pre-
trained, in contrast to the decoder which was learned from
scratch.

B.3. Further comparison of query parameterisation
to TubeR

We extend our experiments from Tab. 1 to UCF and JH-
MDB in Tab. A6. We observe that our method of bind-
ing queries to people, instead of actions (as done in Tu-
beR [22]), still improves here, albeit by a smaller margin.

https://github.com/amazon-science/tubelet-transformer#ava-22-dataset


Table A4. Model architecture hyperparameters. We used the same
decoder even when scaling up the vision encoder.

Hyperparameter Model size

Base Large

Decoder
Number of layers 6
Learning rate 10−4

Hidden size 256
MLP dimension 2048
Dropout rate 0.1
Box head num. layers 3

Encoder
Learning rate 5× 10−6 2.5× 10−6

Learning rate (CLIP init.) 1.25× 10−6

Patch size 16× 16× 2
Spatial num. layers 12 24
Temporal num. layers 4 8
Attention heads 12 16
Hidden size 768 1024
MLP dimension 3072 4096

Although these datasets have one action per tube, we also
need to predict when an action starts and ends within a
tubelet. TubeR’s approach requires an additional “action
switch” [22], which we do not (Sec. 3.4), and so our design
may aid model training.

Note that experiments were performed using the same
settings as Tab. 1, namely using a ViViT-Base backbone and
a frame resolution of 160p.

B.4. Additional analysis of query parameterisation
and matching

Tables 2 and 3 in the paper analysed the effect of our query
parameterisation, and matching in the loss calculation, on
the AVA and UCF101-24 datasets. In Tab. A7 and A8, we
perform these experiments on JHMDB too, and find that all
our findings are consistent here as well.

B.5. Decentering

The majority of prior work on keyframe-based action local-
isation datasets (e.g. AVA and AVA-Kinetics) predict only
at the centre frame of the video clip, as only sparse super-
vision at this central keyframe is available. As our model
predicts tubelets, we intuitively would like to supervise it
for other frames in the input clip as well.

To this end, we introduce another data augmentation
strategy, named “decentering”, where we sample video clips
during training such that the keyframe with supervision is
no longer at the central frame, but may deviate randomly
from the central position. We parameterise this by an inte-

ger, ρ, which defines the maximum possible deviation, and
randomly sample a displacement ∈ [−ρ, ρ] during training.

We found that this data augmentation strategy results
in qualitative improvements in the predicted tubelets (as
shown in the supplementary video). However, as shown
in Tab. A9, it has minimal effect on the Frame AP which
only measures performance on the annotated, central frame
of AVA video clips.

Note that for datasets with full tube annotations, i.e.
UCF101-24 and JHMDB51-21, there is no need to apply
decentering, as each frame of the video clip is already an-
notated. We do, however, use decentering with the ρ = 8,
when training with weak supervision on UCF101-24 (Tab. 4
of the main paper).

B.6. Scale augmentation

Consistent with object detection in images [5, 9, 13, 16],
we found it necessary to perform spatial scale augmenta-
tion during training to achieve competitive action localisa-
tion performance. As shown in Tab. A10, we found that
performing “zoom out” as well as “zoom in” scale aug-
mentation during training significantly boosts action local-
isation performance. This departs from the choice of per-
forming “zoom in” only scale augmentation in previous
work [8, 19, 20].

B.7. Focal and auxiliary loss

Following [14, 21, 23] we use sigmoid focal cross-entropy
loss [13] as our classification loss,

Lclass(a, â) =− α · a · âγ log(â) (A1)
− (1− α)(1− a)(1− â)γ log(1− â),

where a and â are the ground truth and predicted action
class probabilities respectively. α and γ are hyperparame-
ters of the focal loss [13]. Furthermore, following Minderer
et al. [14] we do not use auxiliary losses [4] (i.e. attaching
output heads after each decoder layer and summing up the
losses from each layer) previously found to be beneficial for
matching-based detection models. Both of these choices are
motivated by our ablations in Tab. A11: We observe that the
focal loss consistently improves performance, and that aux-
illiary losses are only beneficial when the focal loss is not
used.



Table A5. Model training hyperparameters for the four datasets considered in our paper. We train with synchronous SGD and a cosine
learning rate decay schedule.

Hyperparameter Dataset

AVA AVA-K UCF101-24 JHMDB51-21

Epochs (training steps) 30 (148 050) 30 (246 690) 30 (88 230) 40 (6 800)
Batch size 128
Optimiser Adam [11]
Adam β1 0.9
Adam β2 0.999
Gradient clipping ℓ2 norm 1.0
Focal loss α 0.3
Focal loss γ 2.0
Number of spatial queries (S) 64
Number of frames (T ) 32 32 32 40
Center deviation, ρ: per-frame matching 4 4 0 0
Center deviation, ρ: tubelet matching 16 16 0 0
Stochastic depth [10] 0.2 0.2 0.5 0.5

Table A6. Further comparison of query parameterisation, using
the ViViT-Base backbone at 160p resolution. Binding queries to
actions is done in TubeR [22]. We report the Frame AP in all cases.

AVA UCF101-24 JHMDB51-21

Query binds to action 23.6 87.4 84.1
Query binds to person 26.7 88.3 84.7

Table A7. Comparison of independent and factorised queries the
JHMDB51-21 dataset. Factorised queries are particularly benefi-
cial for predicting tubelets, as shown by the largest improvement
in the Video AP50. Both models use tubelet matching in the loss.

Query fAP vAP20 vAP50

Independent 85.0 88.5 85.2
Factorised 86.9 89.5 88.2

Table A8. Comparison of independent and tubelet matching for
computing the loss on JHMD51-21. Tubelet matching is particu-
larly beneficial for the Video AP50, showing that it helps to predict
more temporally coherent tubelets, as is the case on UCF101-24
as well (in the main paper).

Query fAP vAP20 vAP50

Per-frame matching 86.0 88.3 86.0
Tubelet matching 86.9 89.5 88.2

Table A9. Effect of keyframe decentering studied on the AVA
dataset (resolution 160p) for a model with IN21K→K400 initial-
isation, and factorised queries. Mild amounts of keyframe decen-
tering do not hurt performance measured on the center frame while
explicitly supervising the models ability to localise and predict ac-
tions on other frames. In fact, models trained with small amounts
of decentering tend to perform better than models trained without
any decentering.

Center deviation, ρ mAP

0 26.5
1 26.8
2 26.5
4 26.7
8 26.4
16 26.6

Table A10. Comparison of spatial scale augmentation for our
models with a ViViT/B backbone on the AVA dataset (resolution
of 140p on the shorter side). We find that large range in scale-
jittering, in the range of (0.5, 2.0) of the original input frame, as
used in [9] works the best. Notably, doing scale augmentation
in range of ( 8

7
, 10

7
) as in the open-sourced SlowFast [8] performs

significantly worse. Performing no scale augmentation (first row)
performs the worst as expected.

Scale (min, max) mAP

(1, 1) (none) 22.5
(1.14, 1.43) [8] 23.9

(0.25, 1.0) 22.7
(0.5, 1.0) 23.4
(0.25, 4.0) 25.1
(0.5, 2.0) 25.6



Table A11. Effect of using sigmoid loss and auxiliary losses
studied on the AVA dataset (resolution 160p) for a model with
IN21K→K400 initialisation. Focal loss (α = 0.3 and γ = 2)
clearly performs better than the alternatives. Moreover, the use of
auxiliary losses leads to a mild degradation in performance when
combined with focal loss, but improves results when the focal loss
is not used.

Focal loss Auxiliary losses mAP

✗ ✗ 20.8
✗ ✓ 21.8
✓ ✓ 26.4
✓ ✗ 26.8
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