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Supplementary Material

We provide more supporting materials in this supple-
mentary file. First, we discuss why the 8 × 8 block-wise
DCT transformation is deprecated. Second, we introduce
how to modulate the sub-nets in the IR Network Container
for different methods. Then, the effect and effectiveness
of each component in our framework are thoroughly ab-
lated, such as the impact of βi in Content Consistency Loss
(CCLoss), the impact of the number of hyperparameter n,
and the effectiveness of the divide-and-conquer strategy.
Last, more visual comparisons are presented.

A. Why Deprecates the 8×8 DCT?
As shown in Fig. S1, we apply the 8×8 block-wise

DCT and its inverse transformation on an arbitrary cropped
square image, resulting in the image on the right. It can be
seen that this transformation leads to severe visual discon-
tinuity, so we deprecate it and use the typical type-II DCT
and iDCT transformation on the whole image instead.

8x8 DCT and
iDCT transform 

Figure S1. 8 × 8 block-wise DCT and iDCT transform leads to
severe visual discontinuity. Zoom in for more details.

B. How to Modulate the Sub-nets?
The details of modulating the sub-nets of different CNN-

and Transformer-based methods can be found as follows:
For the CNN-based methods, taking EDSR [7] and n=2
as an example, the original EDSR contains a shallow fea-
ture extraction layer, 32 duplicated residual blocks with
256 channels of feature layers in each block, and a high-
quality feature reconstruction layer following after. n=2
means there will be 2 sub-nets, Subnet1 and Subnet2.
Subnet1 contains the shallow feature extraction layer and
the first 16 residual blocks by modulating the number of
channels to 128. Subnet2 contains the remaining 16 resid-
ual blocks, whose number of channels still retains the origi-
nal 256. Then, 2 independent feature reconstruction layers,
Recon1 and Recon2, replace the original high-quality fea-
ture reconstruction layer and they will transform the cor-
responding high-dimensional logits to RGB space. For

the Transformer-based methods, the construction strategy
of different sub-nets is similar to that in EDSR. Taking
SwinIR [6] and n=3 as an example, the number of Residual
Swin Transformer Blocks (RSTBs) and Swin Transformer
Layer (STL) in the original SwinIR are both 6. When set-
ting n to 3, in Subnet1, we retain the shallow feature extrac-
tion layer and there are 2 RSTBs, whose number of STL
is modulated to 2. As for Subnet2, it cascades another 2
RSTBs, whose number of STL is modulated to 4. Subnet3
consists of the last 2 RSTBs, whose number of STL still
keeps 6. After that, Recon, containing 3 independent fea-
ture reconstruction layers (Recon1, Recon2, and Recon3),
will transform the corresponding high-dimensional logits to
RGB space respectively. It is worth noting that the smaller
the sub-net index number is, the fewer the number of fea-
ture layers and channels it contains. Such modulations will
bring about a reduction in computation cost, while the com-
putational cost from the extra feature reconstruction layer
is trivial. Other networks are reorganized in a similar strat-
egy. We demonstrate the strategy of constructing different
sub-nets in the simplest and most direct way, i.e., by mod-
ulating the number of channels (width) and feature layers
(depth) of the original network to control the computational
cost of each sub-net, which indicates our framework can re-
cover the image contents with different patterns well even
without any special designs.

C. Ablation Study on Each Component

In this section, we will step-by-step determine the opti-
mal configuration of hyperparameters in each component of
our framework and, based on this, delve into the effective-
ness of each component.

C.1. How to choose n for each task?

We begin by exploring the influence of the number of de-
coupled content components under our framework for dif-
ferent tasks. Experiments are first conducted on three typ-
ical tasks: single image super-resolution (SISR), grayscale
image denoising, and single image motion deblurring. A
number of representative methods are selected as the obser-
vation objects, and our goal is to determine the correspond-
ing hyperparameter n for each task. Due to the discussion
in Section 3.2 in the main manuscript, when n>1, the com-
putational complexity of the IRNC varies with the change
of n. Therefore, we need to strike a trade-off between per-
formance and computational cost for each task. The exper-
imental results are shown in Fig. S2. We can find that, for
SISR, it achieves a good trade-off between performance and



Figure S2. The influence of the number of decoupled content components under our framework for different tasks. The performance
(PSNR) and computational complexity (GFlops) are both reported for each method. (1)-(5), (6)-(8), and (9)-(10) denote the representative
methods of SISR, grayscale image denoising, and single image motion deblurring respectively. Flops are calculated on average for full-
resolution (1280 × 720) images in 4 Nvidia Tesla V100 GPUs.

computation cost when n=3. So we set the hyperparame-
ter n to 3 for the SR task, and similarly, we set n to 3 and 2
for image deblurring and denoising respectively. Note that,
in this phase, we do not deliberately configure the hyper-
parameter βi in the CCLoss and each βi is simply set to 1.

C.2. Impact of βi in content consistency loss

Once the hyperparameter n for each task is determined,
the number of coefficients in CCLoss is also determined
accordingly. We first investigate the impact of configuring
different βi on the performance of each task. For image de-
noising, image SR, and image deblurring, we set n=2, 3, 3
and retrain our framework on SwinIR [6], EDSR [7], and
BANet [11] using Set12 [12] with σ=50 noise level, Ur-
ban100 [4] with ×4 scale, and GoPro [8] for validation, re-
spectively.

The results are shown in Table S1. We can observe that,
for image SR, fixing β1, β2, and β3 to 0.3, 0.7, and 1 re-
spectively yields better reconstruction results. Meanwhile,
only when allocating comparable weights to the decoupled
content components and placing more emphasis on these
content with more complex patterns (β3=1), is there a no-
ticeable improvement in reconstruction performance. These
observations indicate: 1) the image SR task focuses on the
reconstruction of various content patterns; neglecting any
content would adversely affect performance; 2) when per-
forming image SR, the image content corresponding to di-
verse distribution contributes differently. As for image de-
blurring, similarly, setting β1, β2, and β3 to 0.3, 0.5, and 1,
respectively, achieves better deblurring results. This hints
that the deblurring task also tends to focus more on the
contents with more complex patterns (β3 = 1). For im-
age denoising, setting β1 and β2 to 0.3 and 1 respectively

Table S1. Effects of different βi configurations in proposed Con-
tent Consistency Loss.

Method β1 β2 β3 PSNR(dB) SSIM

SwinIR [6]

1 1 ✗ 28.09 -
0.7 1 ✗ 28.11 -
0.5 1 ✗ 28.13 -
0.3 1 ✗ 28.15 -
0.1 1 ✗ 28.14 -

EDSR [7]

1 1 1 26.82 0.8074
0.7 0.7 1 26.83 0.8076
0.5 0.7 1 26.85 0.8077
0.3 0.7 1 26.89 0.8081
0.5 0.5 1 26.86 0.8078
0.3 0.5 1 26.87 0.8079
0.1 0.5 1 26.84 0.8076

BANet [11]

1 1 1 32.69 0.9572
0.7 0.7 1 32.72 0.9571
0.5 0.7 1 32.73 0.9574
0.3 0.7 1 32.74 0.9577
0.5 0.5 1 32.72 0.9575
0.3 0.5 1 32.76 0.9580
0.1 0.5 1 32.74 0.9574

can obtain better denoising results. When assigning larger
weights to β1, worse noise removal results are achieved.
This demonstrates that it pays more attention to the noised
content with more complicated distribution (β2=1).

Note that the essence of CCLoss is to minimize the DCT
coefficients’ distance between the reconstructed image and
those of the GT image. So, we visualize the DCT co-
efficients of the LQ image, the reconstructed HQ image
with/without the proposed loss function, and the GT im-
age respectively. Taking image SR as an example, we use



Figure S3. The discrepancy of DCT coefficients of the 3 channels in RGB color space. LQ means the LR image with bicubic upsampling.

GRL [5] as the backbone for ×2 SR, randomly crop 100
8×8 patches at the corresponding positions of these 4 kinds
of images, and compute the average DCT coefficients for
each image’s 3 channels respectively. The result is shown
in Fig. S3. It can be observed that under the supervision
of the proposed loss function, the DCT coefficients in the
reconstructed image are closer to the corresponding DCT
coefficients in the GT image than that in the other 2 kinds
of images, which demonstrates the effectiveness of the pro-
posed loss function.

C.3. Impact of the number of hyperparameter n

The number of n denotes the number of content com-
ponents to be decoupled. At the beginning of Section C.1,
we first conduct experiments to evaluate the effect of differ-
ent n in different IR tasks. For further analysis, we com-
bine the denoising results trained on RNAN [14] tested Ur-
ban100 [4] with noise level σ = 50, the super-resolution
results trained on EDSR [7] tested on Urban100 [4] with
×4 scale factor, and the deblurring results trained on
BANet [11] tested on HIDE [10] to form Table S2. Note
that to investigate the impact of the number of hyperparam-
eter n all the βi in three tasks are set to 1.

We can observe that, for image denoising, as long as the
content decoupling operation is performed (n>1), even with
much less computational cost compared to the original net-
work, the performance can still be improved. We further
conduct the following experiment: setting n to 2, which
means only an α1 is used for content decoupling. Then,
we repeat 5 training processes on RNAN [14] while observ-
ing the variation trend of α1. The experimental results are
shown in Fig. S4(a). We find that regardless of the random
initialization of α1, it will eventually converge to around
0.9. This indicates that, when conducting noise removal,
our framework tends to focus more on the image content
with a more complicated distribution that contains the noise.
From Table S2, for image SR, we observe a severe perfor-
mance decrease when setting n=2 compared to the original
network (n=1). This is primarily due to the decrease in the
network’s fitting ability, indicating that the heavy reduction

Table S2. The effects of the number of hyperparameter n.

Method the number of n Flops(G) PSNR(dB) SSIM

RNAN [14]

1(Original) 12010.4 27.65 -
2 8247.6 27.73 -
3 10689.6 27.78 -
4 17563.4 27.82 -
5 22187.3 27.86 -

EDSR [7]

1(Original) 2699.4 26.64 0.8033
2 1875.8 25.98 0.7994
3 2402.5 26.82 0.8037
4 2981.6 26.85 0.8038
5 3265.4 26.87 0.8037
6 4186.8 26.88 0.8039
7 5231.5 26.89 0.8038

BANet [11]

1(Original) 264.2 30.16 0.9300
2 189.2 29.39 0.8531
3 235.6 30.42 0.9317
4 372.4 30.44 0.9318
5 518.1 30.45 0.9320
6 673.6 30.47 0.9322
7 859.4 30.46 0.9321

in Flops would hardly make the network catch degraded
features more accurately. However, when n=3, our method
achieves a good trade-off between performance and com-
putational complexity. As n increases beyond 3, the com-
putational cost also increases due to the reuse of sub-nets
with smaller index numbers in the IR Network Container,
while the performance gains are marginal. Furthermore, we
also set n to 3, which means using α1 and α2 for content
decoupling, and conduct 5 replicated training processes on
EDSR [7] while observing the trend of α1 and α2 as well.
The results are shown in Fig. S4(b) and (c), where α1 and
α2 converge to around 0.2 and 0.9, respectively. This indi-
cates that, for image SR, our framework tends to disentangle
the image component with diverse content distribution from
LR. For image deblurring, we set n to 3 and also conduct 5
replicated training processes on BANet [11] while observ-
ing the trend of α1 and α2. The results shown in Fig. S4(d)
and (e) indicate that image deblurring has similar conclu-
sions to image SR.

It is worth noting that, unlike other frequency decoupling



Figure S4. The variation trends of different randomly initalized αi for 3 tasks. Five repeated training processes are conducted on corre-
sponding methods and the value of each αi is observed at the first 200,000 iterations.

Table S3. Effects of different content components restored by different sub-nets. C1, C2, and C3 represent the content components
sequentially decoupled from the Content Decoupling Module respectively. S1, S2, and S3 denote Subnet1, Subnet2, and Subnet3.

RNAN [14] on Set12 [12] with σ=50 ELAN [13] on Set5 [2] with ×4 scale factor GRL [5] on HIDE [10]
Case0 Case1 Case2 Case3 Case4 Case0 Case1 Case2 Case3 Case4 Case5 Case6 Case0 Case1 Case2 Case3 Case4 Case5 Case6

- - - - - - C1 ✗ S1 S1 S2 S2 S3 S3 C1 ✗ S1 S1 S2 S2 S3 S3
C1 ✗ S1 S2 S1 S2 C2 ✗ S2 S3 S3 S1 S1 S2 C2 ✗ S2 S3 S3 S1 S1 S2
C2 ✗ S2 S2 S1 S1 C3 ✗ S3 S2 S1 S3 S2 S1 C3 ✗ S3 S2 S1 S3 S2 S1

PSNR(dB) 27.70 27.83 27.59 27.62 27.44 PSNR(dB) 32.75 32.86 32.69 32.50 32.57 32.63 32.48 PSNR(dB) 31.65 31.76 31.52 31.26 31.67 31.35 31.22
SSIM - - - - - SSIM 0.9022 0.9031 0.9014 0.8999 0.9011 0.9013 0.8997 SSIM 0.947 0.948 0.933 0.924 0.942 0.919 0.916

methods mentioned in Section 2 in the main manuscript,
our framework allows for more fine-grained content decou-
pling by predefining the hyperparameter n, resulting in bet-
ter restoration performance. To obtain good trade-offs be-
tween performance and computational cost, we finally set
n=2, 3, 3 in both real and synthetic scenes for image de-
noising, image SR, and image deblurring respectively.

C.4. Effectiveness of divide-and-conquer strategy

We further investigate the effectiveness of the divide-
and-conquer strategy on performance by exploring the im-
pact of different Subneti handling different content com-
ponents. The experimental results are shown in Table S3.
Specifically, we take image denoising on RNAN [14] as an
example. The experiments are divided into 5 cases: Case0
represents the original performance; Case1-4 represent the
different content components decoupled by the Content
Decoupling Module are alternately fed into Subnet1 and
Subnet2. The performance is improved only when the con-
tent components sequentially generated from the Content
Decoupling Module, i.e. C1 and C2, are recovered using
Subnet1 and Subnet2, respectively (Case1). As for Case2,
when the higher computational complexity Subnet2 is used
to handle the content component with a much less com-
plicated distribution (C1), it leads to a certain degree of
overfitting and adversely affects performance. The experi-
mental results demonstrate the effectiveness of the proposed
divide-and-conquer strategy. Another two tasks get similar
conclusions from the experimental results.

D. Additional Visual Results
In this supplementary material, we give more visual

comparison results of our CoDe and other most current
state-of-the-art methods as the supplement of the visualiza-
tion in the main manuscript.

Real-world image super-resolution: Fig. S5
Gaussian grayscale image denoising: Fig. S6
Gaussian color image denoising: Fig. S7
Real-world image denoising: Fig. S8 and Fig. S9
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Figure S5. Visual comparisons of real-world image SR. The image is from RealSR [3]. Best viewed by zooming.
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Figure S6. Visual comparison of gaussian grayscale image denoising with noise level σ=50. Zoom in for more details.
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Figure S7. Visual comparison of gaussian color image denoising with noise level σ=50. Zoom in for more details.
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Figure S8. Visual comparisons of the real-world image denoising examples from SIDD [1] dataset. Zoom in for a better view.
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Figure S9. Visual comparisons of the real-world image denoising examples from DND [9] dataset. Zoom in for a better view.
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