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Supplementary Material

The supplementary material is organized as follows:
Section 6 provides more detailed theoretical analysis; Sec-
tion 7 presents the related work to this paper; Section 8
elaborates upon the method pipeline; Section 9 contains ad-
ditional implementation details; Section 10 presents some
ablation studies; Section 11 discusses the broader impact;
and finally, Section 12 presents ethical considerations.

6. Theoretical Analysis
We present the most relevant parts of the referred work [43,
Section 2.1-2.2]. Consider that the diffusion takes place
over the finite interval [0, 1] and let µ be the desired sample
distribution, such that Z1 ∼ µ. Assume µ is absolutely con-
tinuous with respect to the standard Gaussian, denoted by
γd, and define the Radon-Nikodym derivative f = dµ/dγd.
Then the optimal control, defined in the literature as the
Föllmer drift and expressed as

u∗(z, t) = ∇ logQ1−t(f)

= ∇ log 1
(2π(1−t))d/2

∫
f(y) exp

(
− 1

2(1−t)∥z− y∥2
)
dy

would be such that if V (Zt) = u∗(z, t) in Eq. (8), then this
drift would minimize the cost-to-go function:

Ju(z, t) := E
[
1

2

∫ 1

t

∥us∥2ds− log f(Zu
1 )|Zu

t = z

]
.

Equivalently, such a control is the one that, among all
such transportation that maps from γd to µ, minimizes∫ 1

0
∥us∥2ds [14, 24].
The structure of this process presents the opportunity for

accurately performing diffusion, enforcing Zu
1 ∼ µ, while

simultaneously pursuing additional criteria. Specifically:
1. Immediately we recognize that a nontrivial transporta-

tion problem implies the existence of a set (i.e., a
nonunique solution to the constraint satisfaction prob-
lem) of possible drifts such that the final distribution is
µ. We can consider maximizing representativeness as
an alternative cost criterion to

∫
∥us∥2ds. To present

the criteria in a sensible way, given that the training is
conducted on a minimum across mini-batches, we can
instead aim to maximize a bottom quantile, by the cost-
to-go functional,

Jr(z, t) =

∫ 1

t

Qq̃,w∼µ [σ (Zt, w)] ds,

where q̃ is the quantile percentage, e.g. 0.02 (for in-
stance, if a mini-batch of fifty samples were given, this
would be the minimum).

2. Next, notice that with dataset distillation, the small sam-
ple size is significant, which suggests that we can con-
sider the aggregate in a particle framework, where for
i = 1, ..., ND, we have,

dZ
u,(i)
t = u(Z

u,(i)
t , t)dt+ dWt, t ∈ [0, 1]; Z

u,(i)
0 = z0

presenting an additional degree of freedom, which we
take advantage of by encouraging diversity, i.e., mini-
mizing

Jd(z, 1) = max
i,j=1,..,ND

σ
(
Z

u,(i)
1 , Z

u,(j)
1

)
.

Since generation accuracy and representativeness are
criteria for individual particles, maximizing diversity
across particles can be considered as optimizing with re-
spect to the additional degree of freedom introduced by
having multiple particles.

Thus, we can see that it presents the opportunity to consider
generative diffusion as a bi-level stochastic control problem.

A brief note on convergence guarantees for Eq. (7) pre-
sented in the main paper. A straightforward extension of [9]
to three layers (similar to the extension from bi-level to tri-
level convex optimization in [38]) yields convergence guar-
antees in expectation to a stationary point for all objectives.
It is important to note that in the case of nonconvex objec-
tives, the asymptotic point will satisfy a fairly weak con-
dition. Specifically, it may not be stationary for the top
objective, as the lower levels are not necessarily at global
minimizers. This is, however, the best that can be ensured
with stochastic gradient based methods and similar.

7. Related Works
7.1. Dataset Distillation

Dataset distillation (DD) aims to condense the informa-
tion of large-scale datasets into small amounts of synthetic
images with close training performance [5, 21, 47, 57].
The informative images are also useful for tasks like con-
tinual learning [16, 21], federated learning [25, 51] and
neural architecture search [40]. Previous DD works can
be roughly divided into bi-level optimization and train-
ing metric matching methods. Bi-level optimization meth-
ods incorporate meta learning into the surrogate image up-
date [7, 27, 28, 30, 31, 59]. In comparison, metric match-
ing methods optimize the synthetic images by matching the
training gradients [21, 23, 26, 44, 54, 57], feature distribu-
tion [35, 45, 56, 58], predicted logits [46] or training trajec-
tories [3, 11, 49] with original images.
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Figure 7. The training pipeline of the proposed minimax diffusion
fine-tuning. The DiT blocks predict the added noise and original
embeddings (dark-blue crossings). Then the parameters are up-
dated with the simple diffusion objective and the minimax objec-
tives. The minimax objectives (the right part) enforce the predicted
embedding to be close to the farthest real sample and be far away
from the closest predicted embedding of adjacent iterations.

7.2. Data Generation with Diffusion

The significantly improved image quality and sample di-
versity by diffusion models opens up new possibilities for
data generation [8, 20, 22, 32]. Through prompt engineer-
ing [12, 19, 36], latent interpolation [60] and classifier-free
guidance [1, 60], the diversity-improved synthetic images
are useful to serve as augmentation or expansion for the
original samples. The generated images also contribute to
zero-shot image classification tasks [39]. However, these
works mainly focus on recovering the original distribution
with equal or much larger amounts of data. In contrast, we
intend to distill the rich data information into small surro-
gate datasets. Moreover, prompt engineering usually re-
quires special designs according to different data classes,
while our proposed method saves extra effort. As far as
we have investigated, there are no previous attempts to in-
corporate generative diffusion techniques into the dataset
distillation task. In addition to diffusion models, there are
also some previous works considering the diversity issue for
Generative Adversarial Networks (GANs) [2, 17, 29, 52].
However, the improvement in diversity is not reflected in
downstream tasks. In this work, we seek to enhance both
representativeness and diversity for constructing a small
surrogate dataset with similar training performance com-
pared with original large-scale ones.

8. Method Pipeline
We demonstrate the pipeline of the proposed minimax fine-
tuning method in Fig. 7. The real images are first passed
through the encoder E to obtain the original embeddings

Table 6. The training epoch number on different IPC settings for
distilled dataset validation.

IPC 10 20 50 70 100

Epochs 2000 1500 1500 1000 1000

z. Random noise ϵ is then added to the embeddings by
the diffusion process. The DiT blocks then predict the
added noise, with which the predicted original embeddings
ẑ (dark-blue crossings in Fig. 7) are also able to be cal-
culated. We maintain two auxiliary memories M (grey
dots) and D (light-blue crossings) to store the encountered
real embeddings and predicted embeddings at adjacent iter-
ations, respectively. The denoised embeddings of the cur-
rent iteration are pushed away from the most similar pre-
dicted embedding and are pulled close to the least similar
real embedding. The DiT blocks are optimized with the
proposed minimax criteria and the simple diffusion training
loss Lsimple as in Eq. (1).

At the inference stage, given a random noise together
with a specified class label, the DiT network predicts the
noise that requires to be subtracted. Then the Decoder D
recovers the images from the denoised embeddings.

9. More Implementation Details

We conduct experiments on three commonly adopted net-
work architectures in the area of DD, including:
1. ConvNet-6 is a 6-layer convolutional network. In pre-

vious DD works where small-resolution images are dis-
tilled, the most popular network is ConvNet-3 [21, 26,
54]. We extend an extra 3 layers for full-sized 256×256
ImageNet data. The network contains 128 feature chan-
nels in each layer, and instance normalization is adopted.

2. ResNetAP-10 is a 10-layer ResNet [18], where the
strided convolution is replaced by average pooling for
downsampling.

3. ResNet-18 is a 18-layer ResNet [18] with instance nor-
malization (IN). As the IN version performs better than
batch normalization under our protocol, we uniformly
adopt IN for the experiments.
For diffusion fine-tuning, an Adam optimizer is adopted

with the learning rate set as 0.001, which is consistent with
the original Difffit setting [50]. We set the mini-batch size
as 8 mainly due to the GPU memory limitation. The em-
ployed augmentations during the fine-tuning stage include
random resize-crop and random flip.

For the validation training, we adopt the same protocol as
in [21]. Specifically, a learning rate of 0.01 for an Adam op-
timizer is adopted. The training epoch setting is presented
in Tab. 6. The reduced training epochs also partly explain
the reason why the performance gap between the IPC set-



Table 7. Performance comparison on ImageNet-100. The best results are marked as bold.

IPC (Ratio) Test Model Random Herding [48] IDC-1 [21] Ours Full

10 (0.8%)
ConvNet-6 17.0±0.3 17.2±0.3 24.3±0.5 22.3±0.5 79.9±0.4

ResNetAP-10 19.1±0.4 19.8±0.3 25.7±0.1 24.8±0.2 80.3±0.2

ResNet-18 17.5±0.5 16.1±0.2 25.1±0.2 22.5±0.3 81.8±0.7

20 (1.6%)
ConvNet-6 24.8±0.2 24.3±0.4 28.8±0.3 29.3±0.4 79.9±0.4

ResNetAP-10 26.7±0.5 27.6±0.1 29.9±0.2 32.3±0.1 80.3±0.2

ResNet-18 25.5±0.3 24.7±0.1 30.2±0.2 31.2±0.1 81.8±0.7

5
0

 s
te

p
s

2
5

0
 s

te
p

s
10

0
 s

te
p

s

Figure 8. Visualization of images generated by the same model with different denoising steps. For each column, the generated images are
based on the same random seed.

Table 8. The influence of diffusion denoising step number on the
generation time of each image and the corresponding validation
performance. Performance evaluated with ResNet-10 on Image-
Woof. The best results are marked as bold.

Denoising Step
50 100 250

Time (s) 0.8 1.6 3.2

IP
C

10 39.2±1.3 35.7±0.7 39.6±0.9

20 45.8±0.5 44.5±0.6 43.7±0.7

50 56.3±1.0 58.4±0.5 55.8±0.5

70 58.3±0.2 59.6±1.1 58.9±1.4

100 64.5±0.2 63.3±0.7 62.8±0.6

tings of 50 and 70 is relatively small. The adopted data
augmentations include random resize-crop and CutMix.

10. More Analysis and Discussion
10.1. Experiments to ImageNet-100

In addition to the 10-class ImageNet subsets and full
ImageNet-1K, we also conduct experiments on ImageNet-
100, and the results are shown in Tab. 7. The validation
protocol follows that in IDC [21]. Due to the limitation of

computational resources, here we directly employ the of-
ficial distilled images of IDC-1 [21] for evaluation. The
original resolution is 224×224, and we resize the images
to 256×256 for fair comparison. Under the IPC setting
of 10, IDC-1 achieves the best performance. Yet when
the IPC increases, the performance gap between the dis-
tilled images of IDC-1 and randomly selected original im-
ages is smaller. Comparatively, our proposed minimax dif-
fusion method consistently provides a stable performance
improvement over original images across different IPC set-
tings. It is worth noting that for IDC-1, the distillation pro-
cess on ImageNet-100 demands hundreds of hours, while
the proposed minimax diffusion only requires 10 hours. The
significantly reduced training time offers much more appli-
cation possibilities for the dataset distillation techniques.

10.2. Diffusion Denoising Step

In our experiments, we set the diffusion denoising step num-
ber as 50. We evaluate its influence on the validation perfor-
mance in Tab. 8. There are no fixed patterns for achieving
better performance across all the IPCs. Additionally, we
compare the generated images under different step settings
in Fig. 8. For DiT [33], the denoising process is conducted
in the embedding space. Therefore, it is reasonable that with
different steps the generated images are variant in the pixel
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Figure 9. Hyper-parameter analysis on (a) the training epochs; (b) the representativeness weight λr; (c) the diversity weight λd; (d) the
memory size NM . The results are obtained with ResNetAP-10 on ImageIDC. The dashed line indicates the value adopted in this work.
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Figure 10. Visualization of images generated by models after different epochs of training. For each column, the images are generated based
on the same random noise.

space. It can be observed that under all steps, the model
generates high-quality images with sufficient diversity. Tak-
ing the calculation time into consideration, we simply select
50 steps in our experiments.

10.3. Parameter Analysis on ImageIDC

We extensively demonstrate the parameter analysis on Im-
ageIDC to illustrate the robustness of the hyper-parameters.
Fig. 9a shows the performance curve along the training
epochs. As the training process starts, the representa-
tiveness constraint quickly improves the accuracy of small
IPCs. Further training enhances the diversity, where the per-
formance on large and small IPCs shows different trends.
Generally, the generated images achieve the best perfor-
mance at the 8th epoch, which is consistent with the Im-
ageWoof experiments.

Compared with the results on ImageWoof, further en-
larging the representativeness weight λr improves the per-
formance on small IPCs, as illustrated in Fig. 9b. In com-
parison, increasing diversity causes a drastic performance
drop in Fig. 9b. Although the default settings remain rela-
tively better choices, the balance point between representa-

Table 9. The dataset expansion results of the 100-IPC generated
images on ImageWoof.

Test Model Original Original + 100-IPC

ConvNet-6 86.4±0.2 87.0±0.6

ResNetAP-10 87.5±0.5 89.3±0.6

ResNet-18 89.3±1.2 90.1±0.3

tiveness and diversity is worthy of further exploration. The
memory size NM merely has a mild influence on the per-
formance, which aligns with that of ImageWoof.

10.4. Extension to Dataset Expansion

In addition to the standard dataset distillation task, where a
small surrogate dataset is generated to replace the original
one, we also evaluate the capability of the generated im-
ages as an expanded dataset. We add the generated 100-IPC
surrogate dataset to the original ImageWoof (approximately
1,300 images per class) and conduct the validation in Tab. 9.
As can be observed, although the extra images only take up



Table 10. The averaged generation quality evaluation of 10 classes
each with 100 images in ImageWoof.

Method FID Precision (%) Recall (%) Coverage (%)

DM [56] 208.6 22.1 23.8 5.8
DiT [33] 81.4 92.8 38.9 24.1
DiT+Lr 85.4 93.2 38.1 24.6
DiT+Ld 81.1 90.4 46.8 28.3
Ours full 81.5 92.4 45.3 28.6

a small ratio compared with the original data, a consider-
able performance improvement is still achieved. The results
support that the proposed minimax diffusion can also be ex-
plored as a dataset expansion method in future works.

10.5. Generated Samples of Different Epochs

We visualize the images generated by models after different
epochs of training in Fig. 10 to explicitly demonstrate the
training effect of the proposed minimax diffusion method.
As the training proceeds, the generated images present vari-
ation trends from several perspectives. Firstly, the images
tend to have more complicated backgrounds and environ-
ments, such as more realistic water and objects of other cat-
egories (e.g. human). Secondly, there are more details filled
in the images, like the clothes in the first column and the
red spots in the sixth. These new facets significantly en-
hance the diversity of the generated surrogate dataset. Fur-
thermore, through the fine-tuning process, the class-related
features are also enhanced. In the ninth and tenth columns,
the model at the fourth epoch fails to generate objects with
discriminative features. In comparison, the images gen-
erated by subsequent models demonstrate substantial im-
provement regarding the representativeness property.

10.6. Generation Quality Evaluation.

We further report quantitative evaluations on the generation
quality by adding the proposed minimax criteria in Tab. 10.
The representativeness and diversity constraints improve
the precision and recall of the generated data, respectively.
The full method finds a balanced point between these two
properties while obtaining the best coverage over the whole
distribution. The fine-tuning brings negligible influence on
the FID metric. And all the metrics of our proposed method
are significantly better than those attained by DM [56].

10.7. Generated Samples of Different Classes

We present the comparison between the samples selected by
Herding [48] and those generated by our proposed minimax
diffusion method on ImageNet-100 from Fig. 11 to Fig. 20.
In most cases, the diffusion model is able to generate real-
istic images, which cannot easily be told from real samples.
Herding also aims to select both representative and diverse

samples. However, the lack of supervision on the semantic
level led to the inclusion of noisy samples. For instance, the
walking stick class contains images of mantis, which can
originally be caused by mislabeling. The proposed mini-
max diffusion, in comparison, accurately generates images
of the corresponding classes, which is also validated by the
better performance shown in Tab. 7. There are also some
failure cases for the diffusion model. The fur texture of
hairy animals like Shih-Tzu and langur is unrealistic. The
structures of human faces and hands also require further re-
finement. We treat these defects as exploration directions
of future works for both diffusion models and the dataset
distillation usage.

11. Broader Impacts
The general purpose of dataset distillation is to reduce the
demands of storage and computational resources for train-
ing deep neural networks. The requirement of saving re-
source consumption is even tenser at the age of founda-
tion models. Dataset distillation aims to push forward the
process of environmental contributions. From this perspec-
tive, the proposed minimax diffusion method significantly
reduces the requirement resources for the distillation pro-
cess itself. We hope that through this work, the computer
vision society can put more attention on practical dataset
distillation methods, which are able to promote the sustain-
able development of society.

12. Ethical Considerations
There are no direct ethical issues attached to this work. We
employ the publicly available ImageNet dataset for experi-
ments. In future works, we will also be devoted to consid-
ering the generation bias and diversity during constructing
a small surrogate dataset.
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