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In this supplementary material, we first present detailed experimental settings in Sec. 1. Next, in Sec. 2, we offer additional
visualization and analysis to further our understanding of the observations. We then present more qualitative results of our
method in Sec. 3. Finally, we discuss the limitations of our approach and potential directions for future work in Sec. 4.

Input size Encoder Decoder

f1 : 256×256
Conv, c-128

{Residual Block, 128-c} × 2
Downsample Block, 128-c

GN-Swish-Conv, c-3
{Residual Block, 128-c} × 2 + B&D Attn

f2 : 128×128
{Residual Block, 128-c} × 2
Downsample Block, 256-c

Upsample Block, c-128
{Residual Block, 256-c} × 2 + B&D Attn

f3 : 64×64
{Residual Block, 256-c} × 2
Downsample Block, 256-c

Upsample Block, c-256
{Residual Block, 256-c} × 2 + B&D Attn

f4 : 32×32
{Residual Block, 256-c} × 2
Downsample Block, 512-c

Upsample Block, c-256
{Residual Block, 256-c} × 2 + B&D Attn

f5 : 16×16
{Residual Block, 512-c} × 4

GN-Swish-Conv, 256-c

Upsample Block, c-256
{Residual Block, 512-c} × 4 + B&D Attn

Conv, c-512

Table 1. Architecture of SeQ-GAN for 1st phase and 2nd phase tokenizer learning. The residual block consists of GN [12]-Swish [10]-
Conv-GN-Swish-Conv. B&D Attn: interleaved block regional and dilated attention [15]; c: channels; f: compression ratio.

Model #Params #Blocks #Heads Model Dim Hidden Dim Dropout #Tokens

AR/NAR 172M 24 16 768 3072 0.1 256
AR/NAR (Large) 305M 24 16 1024 4096 0.1 256

Table 2. Architecture of autoregressive (AR) and non-autoregressive (NAR) transformers. Both transformers share the same architecture,
except for the causal attention used in the AR transformer.

1. Experimental Settings
Tokenizer learning. As shown in Table. 1, SeQ-GAN’s architecture is based on VQGAN [4]. However, we modified the
architecture in the first learning phase by removing the attention and constructing a convolution-only VQGAN. In the second
learning phase, we enhanced the decoder with block regional and dilated attention (B&D Attn) to make attention suitable
for high-resolution feature maps. SeQ-GAN has a total of 54.5M and 57.9M parameters for the first and second learning
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phases, respectively. We use the style-based discriminator [9] for training SeQ-GAN, as suggested in VIT-VQGAN [14].
The hyperparameters used for training SeQ-GAN are summarized in Table. 3.
Generative transformer training. The autoregressive (AR) and non-autoregressive (NAR) transformers share the same
architecture, except that the AR transformer adopts causal attention. As detailed in Table. 2, the AR/NAR transformers and
their large variant have 172M and 305M parameters, respectively. We train both types of generative transformer using the
hyperparameters listed in Table. 4. During sampling, we adopt the basic sampling techniques from VQGAN [4] (i.e., top-p
sampling [7]) and MaskGIT [2] (i.e., adjusting sample temperature), while excluding the classifier-free guidance [6] and
rejection sampling [11] for simplicity.
Detailed settings for observation and ablation experiments. Our observation (see Sec. 3.3 in the manuscript) and ablation
experiments (see Sec. 4.4 in the manuscript) are conducted on the ImageNet [3] dataset. We mostly follow the same
configurations as the benchmark experiments listed in Table. 3, with the exception that we use a batch size of 64 for SeQ-
GAN learning. Based on each VQ tokenizer, we train the generative transformer on ImageNet with a batch size of 64 for
500,000 iterations, while keeping other settings the same as in Table. 4.

For Observation 1 (see Sec. 3.3.1), we evaluate different VQ tokenizers on various transformer configurations: 1) Dif-
ferent parameter sizes, including AR with 172M parameters and AR-Large with 305M parameters. 2) Different types of
transformers, including both autoregressive and non-autoregressive transformers with 172M parameters. 3) Different train-
ing iterations, including AR-Large and AR-Large-2×, where we add an extra 500,000 iterations to the AR-Large model to
investigate whether longer training eliminates the difference in VQ tokenizer.

ImageNet FFHQ Cat Bedroom Church
Dataset Statistics

Training Set 1,281,167 60,000 1,657,266 3,033,042 126,227
Validation Set 50,000 10,000 - - -

1st Phase of Tokenizer Learning
Batch Size 256 64 64 64 32
Iterations 500,000 300,000 26,000 48,000 4,000
Epochs 100 320 1
Learning Rate 1e-4 5e-5
LR Decay Cosine (end lr=5e-5) -
Optimizer Adam (β1=0.9, β2=0.99)

2nd Phase of Tokenizer Learning
Batch Size 128 32 64 64 32
Iterations 200,000
Learning Rate 5e-5
Optimizer Adam (β1=0.5, β2=0.9)

Table 3. Experimental setting of training SeQ-GAN on ImageNet [3], FFHQ [8], and LSUN [13]-{Cat, Bedroom, Church}.

2. More Visualization and Analysis of the Observations
In this section, we present additional visualizations to support our observations and proposed solutions.

First, we train SeQ-GAN with varying semantic ratios α and plot the validation loss curve for each corresponding gener-
ative transformer training in Fig. 2. Our results show that a larger semantic ratio α results in lower validation loss, indicating
that generative transformers are better able to model the discrete space constructed by VQ tokenizers when more semantics
are incorporated.

Next, we employ our proposed visualization pipeline to examine the reconstruction and AR prediction using SeQ-GAN
with two different semantic ratios (α ∈ 0, 1). Fig. 3 demonstrates that the generative transformer trained on SeQ-GAN (α=1)
is better able to model each instance (e.g., Row (a-c)), the semantic features (e.g., the cat’s face in Row (d) and the eagle’s
beak in Row (e)), and the structure (e.g., the peaked roof in Row (f)). Note that compared to the SeQ-GAN (α=0) in Fig. 3,
the reconstruction of the SeQ-GAN (α=1) loses some color fidelity and high-frequency details, leading to similar problems
of lost details and spatial distortion in the generation results (see Fig. 1 (1st phase)).

Finally, to address the issue of lost details and spatial distortion resulting from removing shallow layers in Lα=1
per during the

first phase of tokenizer training, we use a two-phase tokenizer learning approach in our SeQ-GAN. In the second phase, we



ImageNet FFHQ Cat Bedroom Church
Dataset Statistics

Training Set 1,281,167 60,000 1,657,266 3,033,042 126,227
Validation Set 50,000 10,000 - - -

Autoregressive Transformer (AR)
Batch Size 256 32 256 256 64
Iterations 1,500,000 500,000
Optimizer AdamW (β1=0.9, β2=0.96, weight decay=1e-2)
Learning Rate 1e-4
LR Decay Exponential (end lr=5e-6, start iter = 80, 000)
Top-p Sampling 0.92 0.98

Non-Autoregressive Transformer (NAR)
Batch Size 256 32 256 256 64
Iterations 1,500,000 500,000
Optimizer AdamW (β1=0.9, β2=0.96, weight decay=1e-2)
Learning Rate 1e-4
LR Decay Linear (end lr=0, start iter = 50, 000)
Sampling Temperature 0.45 0.65

Table 4. Experimental setting of training generative transformers on ImageNet [3], FFHQ [8], and LSUN [13]-{Cat, Bedroom, Church}.
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Figure 1. Influence of the 2nd phase tokenizer learning on generation results. (Zoom in for best view.)

finetune an enhanced decoder to restore the lost details. To demonstrate the effectiveness of our two-phase tokenizer learning
on generation quality, we decode the transformer-sampled indices to image space using the decoder from both SeQ-GAN
(1st phase) and SeQ-GAN (2nd phase), and present the generation results in Fig. 1. Our visualization clearly shows that



SeQ-GAN (2nd phase) preserves more details and enhances generation quality compared to SeQ-GAN (1st phase).
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Figure 2. Validation loss curves of generative transformers training on ImageNet. Generative transformers are built upon the SeQ-GAN
tokenizers with different semantic ratios (α).
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Figure 3. Visual comparison of the influence of SeQ-GAN with different semantic ratios (α ∈ 0, 1) on image reconstruction and AR
prediction. Compared to SeQ-GAN (α=0), the AR transformer built on SeQ-GAN (α=1) better models each instance (e.g., Row (a-c)),
semantic features (e.g., the cat’s face in Row (d) and the eagle’s beak in Row (e)), and structure (e.g., the peaked roof in Row (f)).

3. More Qualitative Results
We provide qualitative comparisons to BigGAN [1], VQGAN [4] and MaskGIT [2] in Fig. 4, Fig. 5 and Fig. 6. For MaskGIT
and BigGAN, the samples are extracted from the paper and for VQGAN, we use their pre-generated samples in the official
codebase1. Our SeQ-GAN+NAR produces results with better quality and diversity than previous methods. From the uncu-
rated results in Fig. 7, Fig. 8, Fig. 9 and Fig. 10, our SeQ-GAN+NAR can generate images with high quality and diversity on
unconditional image generation.

1https://github.com/CompVis/taming-transformers



4. Limitation and Future Work
4.1. Future Work

Our observation 1 indicates that the quality of the discrete latent space in VQ-based generative models cannot be directly
assessed by reconstruction fidelity, as the reconstruction and generation have different optimization goals. Thus, future work
could design more intuitive methods to evaluate the quality of the discrete latent space.

In addition, observation 2 highlights the importance of semantics in the discrete latent space for visual synthesis. We have
kept our approach simple by controlling the semantic ratio through the modification of the perceptual loss. Future works
on VQ tokenizers can explore more effective ways to balance semantic compression and details preservation. For example,
contrastive learning may improve the semantics compression of VQ tokenizers.

4.2. Limitation

Our method has the limitation inherited from likelihood-based generative models. While techniques such as rejection sam-
pling [11] and classifier-free guidance [6] can be used to filter out samples with bad shapes and improve sample quality in
conditional image generation, there are few sampling techniques available for improving unconditional image generation.
Classifier-based metrics such as FID tend to focus more on textures than overall shapes, and thus may not be consistent
with human perception, as pointed out in [5]. To address this, StyleGAN2 introduces the perceptual path length (PPL) met-
ric [8], which is more related to the shape quality of samples. StyleGAN2 regularizes the GAN training to favor lower PPL.
Although generative transformers with the SeQ-GAN tokenizer can achieve a better FID than StyleGAN2 in unconditional
image generation, some samples still have poor overall shapes (as seen in the uncurated samples in Fig. 8). Therefore, an
interesting area for future research is to investigate the design of sampling techniques for unconditional image generation in
likelihood-based generative models to improve overall shape quality.
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Figure 4. Qualitative comparison with BigGAN [1], VQGAN [4] and MaskGIT [2] on the class 0 (tench) and class 1 (glodfish) of
ImageNet [3].
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Figure 5. Qualitative comparison with BigGAN [1], VQGAN [4] and MaskGIT [2] on the class 22 (bald eagle) and class 97 (drake) of
ImageNet [3].
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Figure 6. Qualitative comparison with BigGAN [1], VQGAN [4] and MaskGIT [2] on the class 108 (sea anemone) and class 141 (redshank)
of ImageNet [3].



Figure 7. Uncurated set of samples of SeQ-GAN+NAR on 256×256 FFHQ.



Figure 8. Uncurated set of samples of SeQ-GAN+NAR on 256×256 LSUN cat.



Figure 9. Uncurated set of samples of on 256×256 LSUN church.



Figure 10. Uncurated set of samples of SeQ-GAN+NAR on 256×256 LSUN bedroom.
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