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Figure 1. Overview of the VideoSwap pipeline for customized
video subject swapping.

1. Additional Details about Methods

1.1. Latent Blend

Given our focus on subject swapping, where the objective is
to maintain the unedited background region identical to the
source video, this is achieved through latent blend [1, 2], as
shown in Fig. 1.

The key idea is that the latent noise in DDIM denoising
and DDIM inversion provides information for the swapped
subject and background, respectively. These two latent
noises can be blended using a mask that indicates the fore-
ground region, thus blending the swapped target with the
source background.

To initiate the process, we acquire the foreground mask
for timestep t as Mt = Mt

i ∪Mt
d, formed by merging the

subject masks Mi during inversion and Md during denois-
ing at the same timestep t. This subject mask is automat-
ically generated through the cross-attention of the concept
token, following the approach of Prompt2Prompt [3].

Subsequently, the foreground mask is used to blend
the latent features, resulting in zt = (1 − Mt) · zti +
Mt · ztd, where zti and ztd represent the latent features of
timestep t in DDIM inversion and DDIM denoising, respec-
tively. Through latent blend, we can effectively preserve the
unedited background in the source video.

1.2. Drag-based Point Control

1.2.1 Layered Neural Atlas Training

As mentioned in Sec. 3.5 of the main paper, we introduce
interactive dragging on the key frame for handling point
correspondence with shape morphing in customized video



Figure 2. Point displacement propagation based on layered neural atlas (LNA) [5, 7]. Once a trained LNA is provided, users can drag a
semantic point at the keyframe, and this displacement is consistently propagated to every frame through the canonical space of the LNA.

subject swapping. This function is supported by the learned
canonical space of Layered Neural Atlas [7] (LNA). Here,
we present a detailed formulation of LNA.

LNA [7] represents a video through the following three
sets of parameterized MLPs:

1. Coordinate Mapping MLPs. The coordinate mapping
MLPs map the spatial-temporal coordinates of video
pixels to the 2D canonical space (i.e., the UV map), de-
noted as M : (x, y, f) → (u, v). We employ separate
mappings, Ms and Mb, for the foreground subject and
background, respectively. Additionally, following the
approach of INVE [5], we include a background map-
ping Bs: (u, v) → (x, y, f) to learn the coordinate map-
ping of the foreground subject from the canonical space
back to the video pixel.

2. Atlas MLPs. The atlas MLPs, denoted as A: (u, v) →
(r, g, b), learn to predict the color of the coordinates on
the UV map.

3. Alpha MLPs. The alpha MLPs, denoted as Mα:
(x, y, f) → α, predict the blending ratio α of the color
value from the subject atlas and background atlas.

Based on these sets of learnable MLPs, the training objec-
tive of LNA is to reconstruct the RGB values of the source
video, accompanied by the following regularization losses:

1. Rigidity Loss. The rigidity loss encourages the learned
mapping from pixel coordinates in the video to the 2D
canonical space to exhibit local rigidity.

2. Consistency Loss. The consistency loss encourages the
mapping of corresponding video pixels across consecu-
tive frames to be consistent, with correspondence esti-
mated through pre-computed optical flow.

3. Sparsity Loss. The sparsity loss encourages the many-
to-one mapping from the video coordinates to the canon-
ical coordinates, penalizing duplicate contents in the
canonical space.

We refer the reader to the LNA [7] paper for the complete
formulation.

1.2.2 Point Displacement Propagation based on LNA

After learned LNA representation, we can propagate the
dragged displacement at the keyframe to the whole video
through LNA. Given a semantic point, with coordinates at
the keyframe fkey represented as (x, y, fkey), its trajec-
tory over time can be expressed as a function of time f :
(x(f), y(f)) = P (f). Suppose a user drag it to a new posi-
tion at (x+ dx, y+ dy, fkey), we aim to estimate the edited
trajectory P ′(f) for f = {0, ..., N}. We resort to LNA’s
representation, and first compute a linearized estimation of
its shifted position on the canonical coordinate:

[du, dv]T = JM (x, y, fkey)[dx, dy]
T , (1)

where JM denote the Jacobian matrix with respect to (x, y).
Next, at a given time f , we estimate the edited coordinate
in the pixel space as

P ′(f) = P (f) + JB(u, v, f)[du, dv]
T , (2)

where (u, v) = B(x, y, fkey) and JB denote the Jacobian
matrix with respect to (u, v). In practice, we approximate
the Jacobian computation by

JM =

[
Ms(x+ ε, y, f)−Ms(x, y, f)
Ms(x, y + ε, f)−Ms(x, y, f)

]T [
1/ε
1/ε

]
, (3)

JB =

[
Bs(u+ ε, v, f)−Bs(u, v, f)
Bs(u, v + ε, f)−Bs(u, v, f)

]T [
1/ε
1/ε

]
, (4)

where ε represents the small coordinate shift. We then use
this edited trajectory P ′(f) for the dragged semantic point
during inference.

1.3. Discussion the Relation to Human Keypoint

The ControlNet [25] and T2I-Adapter [13] also incorporate
control over human keypoints. These human keypoints can
be viewed as a type of sparse semantic points, where the
semantic position and total number of human keypoints are
predefined by the existing pose detectors, and their semantic
embedding for controlling the diffusion model is implicitly
aligned through large-scale paired data. However, defin-
ing keypoints or collecting paired data for open-set concepts
proves challenging due to the variability in semantic points.



Therefore, our method provides a more generic framework
for point-based video editing, with human keypoints serv-
ing as a specific use case within our framework.

2. Experimental Details

2.1. Implementation Details

We implement our method using the Latent Diffusion
Model [18] and incorporate the pretrained motion layer
from AnimateDiff [2] as the foundational model. All ex-
periments are conducted on an Nvidia A100 (40GB) GPU.
All video samples consist of 16 frames with a time stride of
4, matching the temporal window of the motion layer in An-
imateDiff. We crop the videos to two alternate resolutions
(H ×W ): 512 × 512 and 448 × 768. For all experiments,
we employ the Adam optimizer with a learning rate of 5e-
5, optimizing for 100 iterations. Regarding the point patch
loss, we use a patch size of 4×4 around the semantic point.

2.2. Time Cost Analysis

In this section, we analyze the time cost of editing a video
in VideoSwap. All time costs are calculated on an Nvidia
A100 GPU to process a 16 frame video clip.

Time Cost of Preprocess. The preprocessing step involves
(1) extracting point trajectories and their DIFT embeddings,
and (2) registering those semantic points to guide the diffu-
sion model, and (3) generate DDIM-inverted noise. The ex-
traction of trajectories and embeddings takes approximately
30 seconds. The registration step requires 100 iterations,
taking about 3 minutes. And the DDIM inversion of 50
steps takes approximately 30 seconds. To summarize, it
takes about 4 minutes to pre-process a video for editing.

Time Cost of Each Edit. Then for each edit, the time cost
of VideoSwap remain the similar to AnimateDiff [2], ne-
cessitating 50 seconds with the latent blend technique. The
introduction of semantic point correspondence does not no-
tably increase the time cost, given its lightweight computa-
tion.

Time Cost of User-Point Interaction. The time cost for
user-point interaction (e.g., removing or dragging a point)
can be negligible. Dragging a point at the keyframe only
takes 1 seconds to propagate to all other frames through a
learned layered neural altas (LNA).

Extra Time Cost in Training LNA. Our support for drag-
based editing is built upon a learned LNA of the given
video. In contrast to the original LNA, which necessitates
approximately 10 hours of training, we do not require full
training as we only adopt the forward/backward coordinate
mapping. This training process takes about 2 hours for a
video.

Methods/Metrics Text
Alignment (↑)

Image
Alignment (↑)

Temporal
Consistency (↑)

Compare to Previous Video Editing Methods
Tune-A-Video [22] 25.34 - 95.79
FateZero [17] 24.39 - 95.49
Text2Video-Zero [9] 24.85 - 95.02
Rerender-A-Video [24] 24.99 - 92.28
VideoSwap (Ours) 26.87 - 95.93

Compare to Baselines on AnimateDiff
w/ DDIM 27.36 79.79 95.89
w/ DDIM + TAV 24.75 75.93 95.49
w/ DDIM + T2I-Adapter 25.86 77.54 95.50
VideoSwap (Ours) 26.87 79.87 95.93

Table 1. Automatic Quantitative Evaluation on Video Subject
Swapping Results.

2.3. Memory Cost Analysis

The overall memory cost is similar to AnimateDiff, where
we don’t incur significant additional memory costs, as our
semantic points and MLPs are lightweight. It only requires
a memory cost of 16/12 GB for point registration and infer-
ence, respectively.

3. Quantitative Evaluation

3.1. Dataset and Evaluation Setting

We collect 30 videos from Shutterstock and DAVIS [16].
Each category—human, animal, and object—comprises 10
videos. Besides, we gather 13 customized concepts: 5 for
human characters, 3 for animals, and 5 for objects. Due to
legal concerns, we cannot demonstrate qualitative results in-
volving human characters. For each source video, we adopt
8 predefined concepts and 2-5 customized concepts as swap
targets, yielding approximately 300 edited results. For com-
parison to previous video-editing methods that don’t sup-
port customized concepts, we only compute the metric on
predefined concepts. In comparison to the baselines built
upon AnimateDiff [2], we compute the metric on both pre-
defined concepts and customized concepts.

3.2. Automatic Evaluation by CLIP-Score

We conduct a quantitative evaluation using the automatic
metric, CLIP-Score [4]. The metric includes text alignment
and temporal consistency, following [23]. Additionally,
for customized concepts, we follow Custom Diffusion [10]
to compute pairwise image alignment between each edited
frame and each reference concept image. The results are
summarized in Table. 1. In comparison to previous video
editing methods, VideoSwap demonstrates the best text
alignment and temporal consistency. Moreover, when com-
pared to baselines built on AnimateDiff, we achieve supe-
rior image alignment and temporal consistency. However, it
is important to note that CLIP-Score is primarily based on
frame-wise computation and may not align well with human
perception, as discussed in EvalCrafter [11]. Therefore, we



Figure 3. Human evaluation interface on Amazon Mturk. We provide the source video and reference images for target concept and ask
user to select favorable video in terms of different criteria of video subject swapping.

Methods/Metrics Subject
Identity

Motion
Alignment

Temporal
Consistency

Overall
Preference

Ablation of Sparse Motion Feature

V
id

eo
Sw

ap
v.

s. Point Map + T2I-Adapter (100 iters) 87% v.s. 13% 90% v.s. 10% 87% v.s. 13% 90% v.s. 10%
Learnable Embedding + MLP (100 iters) 87% v.s. 13% 95% v.s. 5% 90% v.s. 10% 90% v.s. 10%
Learnable Embedding + MLP (300 iters) 52% v.s. 48% 52% v.s. 48% 52% v.s. 48% 55% v.s. 45%

Ablation of Point Patch Loss
w/o. Point Patch Loss 73% v.s. 27% 73% v.s. 27% 78% v.s. 22% 78% v.s. 22%

Ablation of Semantic-Enhanced Schedule
w/o. Semantic-Enhanced Schedule 85% v.s. 15% 90% v.s. 10% 90% v.s. 10% 87% v.s. 13%

Table 2. Human Evaluation for Ablation Study in VideoSwap. VideoSwap utilizes DIFT embedding + MLP (100 iterations) and incorpo-
rates the point patch loss and a semantic-enhanced schedule to improve the learning of semantic point correspondence.

present these results for reference purposes and primarily
evaluate and compare using human evaluation.

3.3. Human Evaluation Interface

We primarily conduct human evaluations to compare differ-
ent methods based on several criteria: subject identity, mo-
tion alignment, temporal consistency, and overall swapping
preference. As depicted in Fig. 3, we present the source
video and reference images for the target concept in the in-
terface and ask users to select their preferred video based on

various criteria related to customized video subject swap-
ping. We distribute 1000 questionnaires on Amazon Mturk.
The human evaluation results in Table. 1 of the main paper
clearly demonstrate our advantage.

3.4. Human Evaluation for Ablation Study

We employ human evaluation to quantitatively assess vari-
ous variants of our methods, and the results are summarized
in Table. 2. In terms of creating sparse motion features,
our DIFT embedding significantly outperforms point map +
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Figure 4. Limitations in point tracking inherited from Co-Tracker [6] in scenarios involving self-occlusion and significant view changes.

T2I-Adapter and the learnable embedding + MLP with the
same registration iterations. In comparison to the learnable
embedding and MLP, our explicit DIFT embedding already
contains sufficient semantic information, requiring 3× less
time to achieve similar preference. The introduction of the
point patch loss and semantic-enhanced schedule further en-
hances VideoSwap, leading to higher preferences compared
to variants without these enhancements.

4. Qualitative Evaluation

Note that all our qualitative results and analysis are pre-
sented on the static webpage attached in the supplementary
materials. We encourage readers to check out that webpage
for a more comprehensive comparison.

5. Limitation and Future Works

5.1. Limitation Analysis

The limitation of VideoSwap is inherited from inaccurate
point tracking and an imperfect canonical space representa-
tion of Layered Neural Atlas.
Inaccurate Point Tracking by Co-Tracker. VideoSwap
relies on accurate point trajectory extraction. However, the
existing point tracking method Co-Tracker [6] is not stable
enough when the video contains self-occlusion and large
view changes, as shown in Fig. 4(a) and Fig. 4(b). To ad-
dress this issue, users may choose to remove inaccurate se-
mantic points; however, this would result in less motion
alignment. Nevertheless, since tracking any point is a newly
formed problem, any progress in this area can seamlessly
integrate into VideoSwap.
Imperfect Canonical Space by Layer Neural Atlas. As
discussed in Layered Neural Atlas (LNA) [7], LNA fails
to represent videos involving 3D rotations and non-rigid
motion with self-occlusion. VideoSwap resorts to LNA to
propagate the dragged point displacement. Therefore, due
to the limitations of LNA, we cannot support drag-based

interaction in such cases. Improvement in LNA representa-
tion will further broaden support for drag-based video edit-
ing.
Time Cost for Interactive Editing. The time cost of
VideoSwap prohibits its use for real-time interactive edit-
ing. Setting up semantic points for a video takes approx-
imately 4 minutes. And to support drag-based editing, an
additional 2 hours are required to prepare the LNA for the
given video. Furthermore, constrained by diffusion model
sampling, it takes about 50 seconds to perform an edit,
falling short of real-time editing. We anticipate that ad-
vancements in neural field acceleration [5, 8, 14] and dif-
fusion model distillation [12, 19, 20] will significantly re-
duce the preprocess cost and enhance speed for real-time
interactive editing.

5.2. Future Works

VideoSwap embarks on video editing with shape change.
With semantic points as correspondence, VideoSwap can
support interactive editing for large shape changes while
aligning motion trajectories. We list several promising di-
rections motivated by VideoSwap.
Interactive Video Editing. VideoSwap supports drag-
based interaction at the keyframe, propagating the dragged
displacement throughout the entire video and obtaining the
source and dragged trajectories with similar motion. As we
can obtain the source point trajectory and target point tra-
jectory, future work may extend the idea of DragGAN [15]
to the video domain for drag-based real video editing.
Video Editing with Shape Change. VideoSwap has
demonstrated promising results in swapping the subject in
the source video with a target concept that may have a dif-
ferent shape. In our paper, we focus on the swapping fore-
ground subject, without considering background swapping
or stylization. Further research could delve into a more gen-
eral framework for video editing involving shape changes,
thereby enhancing the flexibility of the video editing.
Application based on Customized Video Editing.



VideoSwap has shown promising results in swapping the
subject in the source video with a target concept with cus-
tomized identity. Future work may further investigate its
application in movie generation and storytelling by fixing
subjects’ identities.

5.3. Potential Negative Social Impact

This project aims to provide the community with an ef-
fective method to swap their customized concept into the
video. However, a risk exists wherein malicious entities
could exploit this framework to create deceptive video with
real-world figures, potentially misleading the public. This
concern is not unique to our approach but rather a shared
consideration in other concept customization methodolo-
gies. One potential solution to mitigate such risks involves
adopting methods similar to anti-dreambooth [21], which
introduce subtle noise perturbations to the published images
to mislead the customization process. Additionally, apply-
ing unseen watermarking to the generated video could deter
misuse and prevent them from being used without proper
recognition.

References
[1] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-

horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
22563–22575, 2023. 1

[2] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu
Qiao, Dahua Lin, and Bo Dai. Animatediff: Animate your
personalized text-to-image diffusion models without specific
tuning. arXiv preprint arXiv:2307.04725, 2023. 1, 3

[3] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 1

[4] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. CLIPScore: a reference-free evaluation met-
ric for image captioning. In EMNLP, 2021. 3

[5] Jiahui Huang, Leonid Sigal, Kwang Moo Yi, Oliver Wang,
and Joon-Young Lee. Inve: Interactive neural video editing.
arXiv preprint arXiv:2307.07663, 2023. 2, 5

[6] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker: It is better to track together. arXiv preprint
arXiv:2307.07635, 2023. 5

[7] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel. Lay-
ered neural atlases for consistent video editing. ACM Trans-
actions on Graphics (TOG), 40(6):1–12, 2021. 2, 5

[8] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics
(ToG), 42(4):1–14, 2023. 5

[9] Levon Khachatryan, Andranik Movsisyan, Vahram Tade-
vosyan, Roberto Henschel, Zhangyang Wang, Shant
Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-
image diffusion models are zero-shot video generators. arXiv
preprint arXiv:2303.13439, 2023. 3

[10] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. Multi-concept customization
of text-to-image diffusion. arXiv preprint arXiv:2212.04488,
2022. 3

[11] Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang,
Yong Zhang, Haoxin Chen, Yang Liu, Tieyong Zeng, Ray-
mond Chan, and Ying Shan. Evalcrafter: Benchmarking and
evaluating large video generation models. arXiv preprint
arXiv:2310.11440, 2023. 3

[12] Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang
Zhao. Latent consistency models: Synthesizing high-
resolution images with few-step inference. arXiv preprint
arXiv:2310.04378, 2023. 5

[13] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhon-
gang Qi, Ying Shan, and Xiaohu Qie. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. arXiv preprint arXiv:2302.08453, 2023. 2

[14] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 5

[15] Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie
Liu, Abhimitra Meka, and Christian Theobalt. Drag your
gan: Interactive point-based manipulation on the generative
image manifold. In ACM SIGGRAPH 2023 Conference Pro-
ceedings, pages 1–11, 2023. 5

[16] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc
Van Gool, Markus Gross, and Alexander Sorkine-Hornung.
A benchmark dataset and evaluation methodology for video
object segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 724–732,
2016. 3

[17] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei,
Xintao Wang, Ying Shan, and Qifeng Chen. Fatezero: Fus-
ing attentions for zero-shot text-based video editing. arXiv
preprint arXiv:2303.09535, 2023. 3

[18] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 3

[19] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022. 5

[20] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023. 5

[21] Thanh Van Le, Hao Phung, Thuan Hoang Nguyen, Quan
Dao, Ngoc N Tran, and Anh Tran. Anti-dreambooth: Pro-
tecting users from personalized text-to-image synthesis. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2116–2127, 2023. 6



[22] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian
Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan, Xiaohu
Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning
of image diffusion models for text-to-video generation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7623–7633, 2023. 3

[23] Jay Zhangjie Wu, Xiuyu Li, Difei Gao, Zhen Dong, Jin-
bin Bai, Aishani Singh, Xiaoyu Xiang, Youzeng Li, Zuwei
Huang, Yuanxi Sun, et al. Cvpr 2023 text guided video edit-
ing competition. arXiv preprint arXiv:2310.16003, 2023. 3

[24] Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change
Loy. Rerender a video: Zero-shot text-guided video-to-video
translation. arXiv preprint arXiv:2306.07954, 2023. 3

[25] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3836–3847, 2023. 2


	. Additional Details about Methods
	. Latent Blend
	. Drag-based Point Control
	. Discussion the Relation to Human Keypoint

	. Experimental Details
	. Implementation Details
	. Time Cost Analysis
	. Memory Cost Analysis

	. Quantitative Evaluation
	. Dataset and Evaluation Setting
	. Automatic Evaluation by CLIP-Score
	. Human Evaluation Interface
	. Human Evaluation for Ablation Study

	. Qualitative Evaluation
	. Limitation and Future Works
	. Limitation Analysis
	. Future Works
	. Potential Negative Social Impact


