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1. Setup
The experiments are conducted on a Linux server equipped
with an Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz,
512GB RAM, and 8 NVIDIA RTX 3090 GPUs (with 24GB
memory each). All models are implemented in PyTorch ver-
sion 1.11.0 with CUDA version 11.3, and Python 3.8.

To verify the effectiveness of TTBD, we conduct our
experiments on CIFAR10 [6], CIFAR100 [6], and Tiny-
ImageNet [7] three datasets across VGG, PreAct-ResNet,
and DenseNet three model architectures. The detailed in-
formation about the datasets used in this paper is shown in
Table 1.

Dataset labels Image size Training Images
CIFAR10 10 32× 32× 3 60,000
CIFAR100 100 32× 32× 3 60,000

Tiny-ImageNet 200 64× 64× 3 100,000

Table 1. Detailed information about datasets.

The licenses for the datasets used in this paper are as fol-
lows: License for CIFAR10 is https://github.com/
wichtounet/cifar-10/blob/master/LICENSE.
License for CIFAR100 is https://github.com/
JinLi711/CIFAR-100/blob/master/LICENSE.
License for Tiny-ImageNet is https://github.
com/DennisHanyuanXu/Tiny-ImageNet/blob/
master/LICENSE.

2. Additional Experiments
To further assess the efficacy of TTBD, we extend our eval-
uation to encompass additional datasets (CIFAR100) and
model architectures (DenseNet161). The performance out-
comes of various backdoor defense techniques are show-
cased in Table 3 for the CIFAR100 dataset using the PreAct-
ResNet18 model. Furthermore, Table 4 presents the per-
formance of different defense methods on the CIFAR10
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Attack Before SP [4] TTBD-TeCo TTBD-DDP
(%) ACC ASR ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

BadNet 91.23 90.22 88.94 2.44 88.57 1.17 88.50 2.51
Blended 93.76 94.88 91.37 95.52 86.00 3.00 88.53 2.24

SIG 91.45 91.47 89.75 96.66 88.42 2.17 89.59 2.77
LF 93.76 86.74 91.12 89.36 90.28 2.05 90.47 2.72

WaNet 91.48 89.91 90.80 1.70 91.58 0.49 91.07 0.78
Average 92.34 90.64 90.40 57.14 88.97 1.78 89.63 2.20

Table 2. Comparison with ShapleyPruning on PreAct-ResNet18
using CIFAR10.

dataset using the DenseNet161 architecture. Experiments
in both tables demonstrate the robustness and effectiveness
of TTBD-DDP across different datasets and model architec-
tures. Additionally, it’s important to note that TTBD-TeCo
encounters some instances of failure due to the imprecise
detection mechanism employed by TeCo.

Furthermore, we compare our TTBD-based method’s
performance with SP (Shapley Pruning) [4]. Table 2
demonstrates that although SP performs well against Bad-
Nets and WaNet, it fails against the other three backdoor
attack methods. It is because SP, similar to NC [10], needs
reverse backdoor triggers. When the trigger reverse is not
accurate, the performance of SP will be affected. Our
two-stage backdoor defense method TTBD does not lever-
age trigger reverse and removes the backdoor successfully
across different model architectures and datasets against
different attacks.
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Attack Before FP [8] ANP [11] DBD [5] TTBD-TeCo TTBD-DDP
(%) ACC ASR ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

BadNet [3] 67.21 87.43 65.17 33.65 62.98 0.00 54.06 92.05 65.27 1.68 66.14 2.19
Blended [2] 69.28 99.59 67.11 89.83 64.15 68.07 56.49 100.00 62.81 1.91 65.13 1.89

SIG [1] 69.80 77.85 68.45 9.06 68.88 64.16 60.87 92.72 65.48 62.93 66.25 1.99
LF [12] 68.82 94.96 66.52 83.09 63.59 2.67 56.46 93.97 65.51 1.78 64.15 2.42

WaNet [9] 64.05 97.73 64.76 86.74 59.10 0.03 56.66 96.91 64.07 1.00 64.25 0.91
Average 67.83 91.51 66.40 60.47 63.74 26.99 56.91 95.13 64.63 13.86 65.18 1.88

Table 3. Defense methods against common attacks on PreAct-ResNet18 using CIFAR100.

Attack Before FP [8] ANP [11] DBD [5] TTBD-TeCo TTBD-DDP
(%) ACC ASR ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

BadNet [3] 84.38 89.30 85.12 86.64 77.55 1.89 67.41 15.23 75.01 34.28 84.17 1.68
Blended [2] 85.88 98.56 85.70 98.71 78.87 4.44 56.66 99.53 78.13 2.40 81.86 2.75

SIG [1] 78.54 99.09 83.67 54.79 71.32 1.09 45.40 96.77 74.01 98.70 74.57 2.67
LF [12] 84.56 91.86 84.21 92.36 78.52 3.11 59.62 98.29 73.50 18.20 76.04 8.58

WaNet [9] 84.88 62.58 85.48 13.56 81.30 1.11 65.25 10.98 84.65 1.30 83.38 1.99
Average 83.65 88.28 84.84 69.21 77.51 2.33 58.87 64.16 77.06 30.98 80.00 3.53

Table 4. Defense methods against common attacks on DenseNet161 using CIFAR10.
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