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1. Implementation Details of Loss Functions
Superpixel-guided disparity downsample. To provide
supervision signal for disparity proposal extraction at 1/8
resolution, we introduce a superpixel-guided disparity map
downsample function, which reduces each 8 ⇥ 8 disparity
window to multiple modals. We divide the ground truth dis-
parity map into non-overlapping 8⇥8 windows and perform
an independent downsample for each window.

First, we over-segment the left image IL into superpixels
using the LSC method implemented in OpenCV3. As shown
in Fig. 7, the superpixel effectively groups adjacent pixels
while preserving local image structures, making it appropri-
ate for reducing disparity values. Subsequently, each 8 ⇥ 8
window is decomposed into multiple segments utilizing the
superpixel label map. We sort the segments based on their
pixel count and compute the median disparity of each seg-
ment as the representative. To mitigate over-segmentation
in the window, we employ a non-maximum suppression
(NMS) on the representative disparity list. The suppression
criterion is based on the difference between representative
disparity values. If the absolute difference is less than 0.5
pixels, we merge the suppressed segment into the segment
that suppresses it. After the merge step, we sort the seg-
ments again based on the pixel count and choose the median
disparity of the top 4 segments as the downsample function
output. If there exist fewer than 4 segments, we pad the
output with null values.
Proposal loss. Once we have obtained the downsampled
ground truth disparity modals, we use it to train our dispar-
ity proposal extraction network, as detailed in Sec. 3.5 of
the paper. When computing the proposal loss in Eq. (7),
we need to find the optimal bipartite matching between pro-
posals and ground truth modals. For instance, consider a
pixel on the coarse level with four ground truth disparity
modals, namely {1.1, 1.8, �, �}, and four extracted propos-
als, namely {1.4, 10.2, 10.8, 11.2}. Ignoring null value �,
the optimal bipartite matching pairs consist of (1.1, 1.4)
and (1.8, 10.2). However, we need to be careful with the
close ground truth modals. In this case, the proposal 1.4
already captures the two close ground truth modals 1.1 and
1.8. Thus, the matching pair (1.8, 10.2) is unnecessary and
may induce negative impact on the training.

To address this, we perform an online non-maximum
suppression (NMS) on ground truth modals when comput-
ing the proposal loss. First, we sort ground truth modals
based on their proximity to the extracted proposal set. Prox-
imity is measured by the minimum distance between the
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Figure 7. Superpixels overlaid on ground truth disparity map.

ground truth modal and all proposals. Then, we suppress the
close ground truth modals using the threshold of 8 pixels.
In continuation with the above example, our online NMS
reduces the ground truth modals to {1.1, �, �, �}, and only
one matching pair (1.1, 1.4) is leveraged for proposal loss.
Initialization loss. Besides the proposal loss, an initializa-
tion loss is also employed to supervise label seeds to iden-
tify ground truth modals. As described in Sec. 3.3, label
seeds are derived from a 3D cost volume C, with

C(i, j, z) = hF̃L(i, j), F̃R(i � z, j)i. (9)

We expect the initialization loss to penalize the discrepancy
between ground truth modals and the 3D cost volume C. To
this end, we transform the ground truth modals of each pixel
o into a probability distribution, p⇤(z) =

P
k wk�(z � z⇤k),

where {z⇤k} are the ground truth modals at pixel o and � is
the Dirac delta function. The mass weights {wk} are em-
pirically set to {0.5, 0.3, 0.1, 0.1} for the four sorted ground
truth modals. This simple strategy performs well in all our
experiments. Note that ground truth modals are given with
subpixel precision, however, label seed extractioin happens
with integer disparities. Therefore, we displace the proba-
bility mass as z⇤k to nearby integer disparities as

p̃⇤(z) =
X

k

wk(bz⇤kc+ 1� z⇤k)�(z � bz⇤kc)+

wk(z
⇤
k � bz⇤kc)�(z � bz⇤kc � 1). (10)

We define the initialization loss to be the cross entropy be-
tween ground truth probability p̃⇤ and softmax of 3D cost
volume C along the z dimension, i.e.,

Linit = �
X

z2[0,zmax]

p̃⇤(z) · log(softmaxz(C(i, j, z)). (11)
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2. Additional Implementation Details
Local feature CNN. We use a similar backbone as RAFT-
Stereo [30], which consists of a strided-2 stem and three
residual blocks with strides 1, 2, 1, respectively. The net-
work produces a feature map with 128 channels at 1/4 input
image resolution, which is then downsampled through av-
erage pooling with a stride of 2 and a kernel size of 2. We
further pass the obtained 1/8 resolution feature map and the
original 1/4 resolution feature map to a shared convolution
layer with 256 channels.
Neural message passing. The number of message passing
blocks we use in label seeds propagation (Np), MRF infer-
ence (Ni), and refinement (Nf ) are 5, 10, 5 respectively.
We use same settings for all experiments. The channels of
embedding vectors in all message passing blocks are always
128. The neighborhood window size is 4⇥ 4 for refinement
(Sec. 3.4), and 6 ⇥ 6 for neural MRF inference (Sec. 3.2).
We also found that more message passing blocks and larger
window size would bring slightly better accuracy with con-
siderable computation overhead.
Observed label feature. The observed feature of a candi-
date label must integrate matching cues from both left and
right views. Given the coarse level features F̃L and F̃R,
we compute the observed feature xv of a candidate label
positioned at pv := (i, j, z) using a warping function w.r.t.
F̃L(i, j) and F̃R(i � z, j) as

xv = MLP
�
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v ||xcorr

v

�
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⇣
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(12)

where [·k·] denotes concatenation along the channel dimen-
sion. F̃L

g , F̃R
g are gth grouped features of FL and F̃R,

which are evenly divided into Ng groups. Nc is the channel
of coarse level features, and h·, ·i denotes the inner product.
�1 and �2 are normalization functions to make the terms
xconcat
v and xcorr

v share similar data distribution. Both �1 and
�2 consist of two linear layers, with instance normalization
and activation function following the first linear layer. Since
disparity z is a real number, we leverage bilinear interpola-
tion when indexing feature map F̃R. Our formulation is
inspired by the success of GwcNet [17] and PCWNet [43].

In the refinement stage, we use the same warping func-
tion as Eq. (12), but w.r.t. fine level features F̂L and F̂R.
Cross-shaped window attention. To efficiently capture
long-range dependency for label seed message exchange,
we employ the cross-shaped attention mechanism proposed
in CSWin Transformer [13]. As illustrated in Fig. 8a, the
interested label seed, positioned at pv := (i, j, zk), aggre-
gates matching information from all other label seeds that
share the same i or j coordinate. We follow the paral-
lel multi-head grouping strategy and locally-enhanced posi-

(a) (b)

Figure 8. (a) Cross-shaped attention window arrangement, (b) lo-
cal attention window arrangement.

candidate labels disparity estimation

3px 8px EPE Bad 1.0
[%]" [%]" [px]# [%]#

cross-shaped 99.29 99.77 0.45 4.50
local window 99.18 99.72 0.47 4.56

Table 6. Performance comparison between cross-shaped window
attention and local window attention in label seed propagation.

tional encoding of CSWin Attention [13] when performing
attentional aggregation. The initial matching feature (0)dv

of a label seed v is expected to encode cost features and
underlying disparity value, formally defined as:

(0)dv = MLP
⇣
�3 (Lz (C(i, j, :))) k PE(z)

⌘
, (13)

where C denotes the 3D cost volume computed in label
seeds extraction using Eq. (9). The lookup operator Lz re-
trieves cost features from volume slice C(i, j, :) around in-
teger disparity z for pixel (i, j), akin to RAFT-Stereo [30].
We apply a two-layer MLP called �3 to normalize the re-
trieved cost features before concatenating it with the sinu-
soidal positional encoding (PE) of disparity z.

We validate the design of cross-shaped window atten-
tion by comparing with the local window attention shown
in Fig. 8b. The local window size is set to 8 ⇥ 8 to match
the computation complexity of cross-shaped window atten-
tion on SceneFlow dataset [33]. The results are shown in
Tab. 6. Due to its ability to capture long-range dependency,
cross-shaped window attention performs better than local
window attention for label seed propagation. However, we
do not adopt the cross-shaped window attention in neural
MRF inference and refinement, since it does not adapt to
our proposed content-adaptive positional bias and position
aggregation for different input resolutions.
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