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A. Proofs and Discussions

A.1. Proof and Discussion the Lemma 4.1

Lemma A.1 The objective of the multi-constraint offline
RL with cumulative and state-wise costs can be formulated
as:

π∗ = argmax
π

Eτ∼π

[
∞∑
t=0

γtr(ŝt, at)

]
,

s.t.Eτ∼π

[
∞∑
t=0

γtci(ŝt, at)

]
≤ c̄i, Eτ∼π

[
∞∑
t=0

Di(ŝt, at)

]
≤ D̄i.

(1)
where r(ŝt, at) ≜ r(st, at) and ci(ŝt, at) ≜ ci(st, at).

Proof. Before proving this Lemma, let us first review the
definition of the objective in multi-constraint offline RL.

π∗ = argmax
π

Eτ∼π

[
∞∑
t=0

γtr(st, at)

]
,

s.t. Eτ∼π

[
∞∑
t=0

γtci(st, at)

]
≤ c̄i,

∀t ≥ 0, Est∼p(·|st,at),at∼π(·|st)[ci(st, at)] ≤ D̄i.

(2)

Considering that Constraint 2 in the Eq. (2) requires that
the state-wise costs ci(s, a) at any state are below the state-
wise cost threshold D̄i, which is difficult to handle in algo-
rithm implementation, we propose ensuring that the max-
imum state-wise cost in each trajectory is below the cost
threshold to guarantee that the state-wise costs at any state
are below the state-wise cost threshold. The above proposal
can be mathematically expressed as follows:

∀t ≥ 0, Est∼p,at∼π[ci(st, at)] ≤ max
st,at

ci(st, at) ≤ D̄i. (3)
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Accorging to Eq. (3), we rewrite Eq. (2) as follows:

π∗ = argmax
π

Eτ∼π

[
∞∑
t=0

γtr(st, at)

]
,

s.t. Eτ∼π

[
∞∑
t=0

γtci(st, at)

]
≤ c̄i, max

st,at

ci(st, at) ≤ D̄i.

(4)

Although Eq. (4) has been simplified, we still find it
challenging to implement. To facilitate iterative computa-
tions, we consider transforming constraint 2 in Eq. (4) into
a structure similar to constraint 1. Inspired by SCPO [4], we
convert the state-wise cost into a state-wise cost increment.
By introducing a set of maximum state-wise cost Mi,t and
state-wise cost increment Di,t, we transform the maximum
value constraint problem of constraint 2 in Eq. (4) into a cu-
mulative state-wise cost increment constraint problem simi-
lar to constraint 1. In addition, to facilitate the computation
of state-wise cost increments, we augment the maximum
state-wise cost into the observed state, expanding the ob-
served state as ŝt = (st,Mi,t). We define the maximum
state-wise cost and state-wise cost increment as follows:

Di(ŝt, at) = max{ci(st, at)−Mi,t, 0}, (5)

Mi,t =

k=t−1∑
k=0

Di(ŝk, ak), (6)

where Mi,t = Mi(ŝt, at) represents the maximum state-
wise cost of the i-th cost at step t, and Di,t = Di(ŝt, at)
represents the increment of the state-wise of the i-th cost
at step t. Additionally, the initial values of the maximum
state-wise cost and the increment of the state-wise cost are
defined as Mi,0 = 0 and Di(ŝ0, a0) = ci(s0, a0). Com-
bining the maximum state-wise cost and state-wise cost in-
crement, the maximum state-wise cost constraint in Eq. (4)
is transformed into a constraint on the cumulative of state-
wise cost increments.

Eτ∼π

[
∞∑
t=0

Di(ŝt, at)

]
≤D̄i ⇐⇒ max

st,at

ci(ŝt, at)≤D̄i. (7)

Based on Eq. (7) and (4), we deduce the conclusion stated in
Lemma A.1, which defines the objective of multi-constraint
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offline RL as follows:

π∗ = argmax
π

Eτ∼π

[
∞∑
t=0

γtr(ŝt, at)

]
,

s.t.Eτ∼π

[
∞∑
t=0

γtci(ŝt, at)

]
≤ c̄i, Eτ∼π

[
∞∑
t=0

Di(ŝt, at)

]
≤ D̄i.

(8)
Note that for the convenience of comprehension and ex-

pression, we denote Eτ∼π [
∑∞

t=0 Di(ŝt, at)] ≤ D̄i as a
state-wise cost constraint.

A.2. Proof and Discussion the Remark 4.2

Remark A.2 When the state-wise cost satisfies the cost
constraint Eτ∼π [

∑∞
t=0 Di(ŝt, at)] ≤ D̄i and the cost

threshold of state-wise cost satisfies the condition D̄i ≤
(1 − γ)c̄i, then the cumulative cost also satisfies the cost
constraint Eτ∼π [

∑∞
t=0 γ

tc(ŝt, at)] ≤ c̄i.

Proof. From the cumulative cost constraint, we have:

Eτ∼π

[
∞∑
t=0

γtci(ŝt, at)

]
=

∞∑
t=0

γt
[
Eŝt∼p,at∼πci(ŝt, at)

]
{i}
≤

∞∑
t=0

γt

[
Eτ∼π

∞∑
t=0

Di(ŝt, at)

]
{ii}
≤

∞∑
t=0

γtD̄i

= D̄i

∞∑
t=0

γt {iii}=
D̄i

1− γ
,

(9)

where {i} follows the Eq. (7) and (3) with
Eŝt∼p,at∼πci(ŝt, at) ≤ Eτ∼π

∑∞
t=0 Di(ŝt, at), {ii}

follows the state-wise cost constraints condition, {iii}
follows the summation formula of a geometric series
1

1−γ =
∑∞

t=0 γ
t. Assuming the condition D̄i

1−γ ≤ c̄i is
satisfied, then we have:

c̄i ≥
D̄i

1− γ
≥ Eτ∼π

[
∞∑
t=0

γtci(ŝt, at)

]
. (10)

According to Eq. (10), we conclude that when the condi-
tion D̄i ≤ (1 − γ)c̄i is satisfied, the state-wise cost con-
straint Eŝt∼p(·|ŝt,at),at∼π[Di(ŝt, at)] ≤ D̄i encompasses
the cumulative cost constraint Eτ∼π [

∑∞
t=0 γ

tci(ŝt, at)] ≤
c̄i.

A.3. Proof and Discussion the Proposition 4.3

Proposition A.3 Within the scope of behavioral policies
πβ , the conditional Bellman operator TCB is a γ-contractive
operator under the L+∞ norm, and any initial Q-value can
converge to a unique fixed point through TCB .

Proof. Before proving this proposition, let’s first review the
definition of the conditional Bellman operator.

TCBQ(ŝ, a)=


χ(ŝ, a)+γEŝ′ max

a′
Q(ŝ′, a′), (a∈πβ(a|ŝ))

max
â∼πβ(·|ŝ)

Q(ŝ, â), (a /∈πβ(a|ŝ))
, (11)

Let Q1 and Q2 be two arbitrary Q-values obtained through
iterative computation using the conditional Bellman equa-
tion. To analyze the iterative properties of the conditional
Bellman operator, we categorize the discussion based on
whether action a belongs to the behavior policy πβ .
(Case 1 a ∈ πβ(a|ŝ) ) In this case, based on the conditional
Bellman equation in Eq. (11), we can obtain:

∥TCBQ1(ŝ, a)− TCBQ2(ŝ, a)∥+∞

= max
ŝ,a

∣∣∣∣∣
[
χ(ŝ, a) + γEŝ′ max

a′
Q1(ŝ

′, a′)

]
−

[
χ(ŝ, a) + γEŝ′ max

a′
Q2(ŝ

′, a′)

] ∣∣∣∣∣
= max

ŝ,a

∣∣∣∣∣γEŝ′ max
a′

Q1(ŝ
′, a′)− γEŝ′ max

a′
Q2(ŝ

′, a′)

∣∣∣∣∣
= γmax

ŝ,a

∣∣∣∣∣Eŝ′

[
max
a′

Q1(ŝ
′, a′)−max

a′
Q2(ŝ

′, a′)

] ∣∣∣∣∣
{i}
≤ γmax

ŝ,a
Eŝ′

∣∣∣∣∣max
a′

Q1(ŝ
′, a′)−max

a′
Q2(ŝ

′, a′)

∣∣∣∣∣
≤ γmax

ŝ,a

∥∥∥Q1 −Q2

∥∥∥
+∞

= γ
∥∥∥Q1 −Q2

∥∥∥
+∞

,

(12)

where {i} follow the Jensen’s inequality E(f(x)) ≥
f(E(x)).
(Case 2 a /∈ πβ(a|ŝ)) In this case, based on the conditional
Bellman equation in Eq. (11), we can obtain:

∥TCBQ1(ŝ, a)− TCBQ2(ŝ, a)∥+∞

= max
ŝ,a

∣∣∣∣∣max
â

Q1(ŝ, â)−max
â

Q2(ŝ, â)

∣∣∣∣∣
= max

ŝ,a

∣∣∣∣∣max
â

[
χ(ŝ, â) + γEŝ′ max

â′
Q1(ŝ

′, â′)

]
−

max
â

[
χ(ŝ, â) + γEŝ′ max

â′
Q2(ŝ

′, â′)

] ∣∣∣∣∣
=max

ŝ,a

∣∣∣∣∣max
â

[
γEŝ′ max

â′
Q1(ŝ

′, â′)−γEŝ′ max
â′

Q2(ŝ
′, â′)

] ∣∣∣∣∣
=max

ŝ,a

∣∣∣∣∣γEŝ′ max
â′

Q1(ŝ
′, â′)−γEŝ′ max

â′
Q2(ŝ

′, â′)

∣∣∣∣∣
≤γmax

ŝ,a
Eŝ′

∣∣∣∣∣max
â′

Q1(ŝ
′, â′)−max

â′
Q2(ŝ

′, â′)

∣∣∣∣∣
≤ γmax

ŝ,a

∥∥∥Q1 −Q2

∥∥∥
+∞

= γ
∥∥∥Q1 −Q2

∥∥∥
+∞

.

(13)
Based on the analysis of the aforementioned Case 1 and

Case 2, we conclude that within the range supported by the



behavioral policy πβ , the conditional Bellman operator TCB
is a γ-contraction operator under the L+∞ norm, and any
initial Q-value can converge to a unique fixed point through
TCB.

A.4. Proof and Discussion the Proposition 4.4

Proposition A.4 As the unique fixed point of the condi-
tional Bellman operator, QTCB

is bounded within the range
of behavioral policies πβ , with QTCB

∈ [Qπβ
, Qπ∗

β
]. Here,

Qπβ
represents the Q-value of the behavioral policy, and

Qπ∗
β

represents the Q-value of the optimal policy.

Proof. Before proving this proposition, we first define
Qπβ

(ŝ, a) = χ(ŝ, a)+γEŝ′Ea′∼πβ
(ŝ′, a′) and Qπ∗

β
(ŝ, a) =

χ(ŝ, a)+γEŝ′ maxa′∼πβ
(ŝ′, a′), Separately. Subsequently,

we continue to employ a categorization approach to discuss
the range of Q-value QTCB obtained through conditional
Bellman iteration.
(Case 1 a ∈ πβ(a|ŝ) )in this case, based on the conditional
Bellman equation in Eq. (11) we obtain:

QTCB (ŝ, a)=χ(ŝ, a)+γEŝ′ max
a′∼πβ(·|ŝ′)

Q(ŝ′, a′)=Qπ∗
β . (14)

Additionally, we have:

QTCB (ŝ, a) = χ(ŝ, a) + γEŝ′ max
a′∼πβ(·|ŝ′)

Q(ŝ′, a′)

≥ χ(ŝ, a) + γEŝ′Ea′∼πβ
Q(ŝ′, a′)

= Qπβ

. (15)

(Case 2 a /∈ πβ(a|ŝ) ) in this case, based on the conditional
Bellman equation in Eq.(11) we obtain:

QTCB (ŝ, a) = max
â∼πβ(·|s)

Q(ŝ, â)

= max
â∼πβ(·|ŝ)

[
χ(ŝ, â) + γEŝ′ max

a′∼πβ(·|ŝ′)
Q(ŝ′, a′)

]
= χ(ŝ, â) + γ max

â∼πβ(·|ŝ)
Eŝ′ max

a′∼πβ(·|ŝ′)
Q(ŝ′, a′)

= χ(ŝ, â) + γEŝ′ max
a′∼πβ(·|ŝ′)

Q(ŝ′, a′)

= Qπ∗
β
(ŝ, â)

. (16)

In addition, we have:

QTCB (ŝ, a) = max
â∼πβ(·|ŝ)

Q(ŝ, â)

= max
â∼πβ(·|ŝ)

[
χ(ŝ, â) + γEŝ′ max

a′∼πβ(·|ŝ′)
Q(ŝ′, a′)

]
= χ(ŝ, â) + γ max

â∼πβ(·|ŝ)
Eŝ′ max

a′∼πβ(·|ŝ′)
Q(ŝ′, a′)

≥ χ(ŝ, â) + γEŝ′Ea′∼πβ(·|ŝ′)Q(ŝ′, a′)

= Qπβ (ŝ, â)

(17)

Based on the analysis of Case 1 and Case 2 men-
tioned above, we conclude that the Q-values QTCB obtained
through the iteration of the conditional Bellman equation
converge to QTCB ∈ [Qπβ

, Qπ∗
β
] within the range supported

by the behavioral policy πβ .

B. Experimental Details
B.1. Task and Dataset

Task. To evaluate the performance of POCE in various
tasks across different domains, we select widely adopted
tasks [2, 3] including PointGoal, CarGoal, and AntVeloc-
ity as the experimental tasks for this work. The schematic
diagrams of the three tasks are presented in Fig. 1.

(a) (b) (c)

Figure 1. The three experimental tasks employed in this work.
Where (a) and (b) illustrate the PointGoal and CarGoal tasks be-
longing to the Safety-Gym domain, and (c) portrays the AntVe-
locity task from the Mujoco domain. Additionally, the maximum
number of steps for these three tasks is set to 500 steps.

The PointGoal and CarGoal tasks require the agent to
resist the interference of non-hazardous obstacles in the
environment and navigate around dangerous obstacles to
reach the target location. The agent receives rewards for
approaching or reaching the target location, and the envi-
ronment resets when the agent reaches the target location
or reaches the maximum simulation steps set. Additionally,
when the agent enters a hazardous obstacle area, the envi-
ronment provides a non-zero cost feedback, and the agent is
able to pass through the hazardous obstacles. Note that the
existing PointGoal and CarGoal tasks have a fixed constant
cost, where the agent incurs a cost c = 1 whenever it en-
ters the hazardous obstacle area. This setting is not consis-
tent with real-world applications, where the costs incurred
by the agent should differ between the edge and center re-
gions of the hazardous obstacle area. Inspired by this, we
set the cost of the agent at the center of a hazardous obsta-
cle to be 1, and the cost at the edge of the danger zone to be
zero, with a linear increase in cost as the distance decreases.
Therefore, the cost function in the PointGoal and CarGoal
tasks be formulated as follows:

c =


0, (d > d̄)

d̄− d

d̄
, (d ≤ d̄)

, (18)

where d is the distance between the agent and the center of
the hazardous obstacle, and d̄ is the maximum distance from
the center of the hazardous obstacle to its edge. By applying
the aforementioned modifications to the cost function, the
range of the cost values is transformed from the original
c ∈ {0, 1} to c ∈ [0, 1].
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Figure 2. The reward, cumulative cost, and state-wise cost violation rate curves for the tasks. The shaded curves displayed represent the
mean and variance of online testing during the training process with three different random seeds. The safety factor for this experiment is
φ = 0.6 and φ = 0.4, with a cumulative cost threshold set at c̄i = 5. and a state-wise cost threshold set to D̄i = 0.8.
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Figure 3. The reward, cumulative cost, and state-wise cost violation rate curves for the tasks. The shaded curves displayed represent the
mean and variance of online testing during the training process with three different random seeds. The safety factor for this experiment is
φ = 0.8, with the cumulative cost threshold set at c̄i = 5, and the state-wise threshold set at D̄i = 0.6 and D̄i = 0.4.

The AntVelocity task requires the agent to walk or run
within a specified velocity range. The higher the velocity
of the ant agent, the higher the reward obtained. However,

when the agent’s velocity exceeds a predefined threshold,
the environment provides non-zero cost feedback. Similar
to the problems of the PointGoal and CarGoal tasks, the



cost of the existing AntVelocity task is also not a continuous
real number within the range [0, 1]. Therefore, we redefine
the cost function as follows:

c =


0, (v < v̄)

v − v̄

vmax − v̄
, (v ≥ v̄)

, (19)

where vmax is the maximum velocity of the ant in the envi-
ronment, and v̄ is the speed limit set for the current task.
Dataset. To validate the performance of the algorithm un-
der samples with different behaviors, we collected sample
data of various behaviors. Additionally, to quantify the sam-
ple data of different behaviors, we are inspired by VOCE [1]
and introduced a safety factor φ to measure the sample data
of different behaviors. The safety factor φ is the propor-
tion of safe episodes among the total number of sampled
episodes.

Table 1. The hyper-parameters of the POCE algorithm model.
Where s and a denote the dimensions of the state and action, re-
spectively.

Sort Hyper-parameters Setting

Policy

Number of neurons (s+a)×256×256×256×a
Activation function ReLu

Number of networks 2
Learning rate 5.00e-05

Optimizer Adam

Q-value(r)

Number of neurons (s+a)×256× 256× 256×1
Activation function ReLu

Number of networks 2
Learning rate 1.00e-04

Optimizer Adam

Q-value(ci)

Number of neurons (s+a)×256× 256× 256×1
Activation function ReLu

Number of networks 2
Learning rate 1.00e-04

Optimizer Adam

Q-value(Di)

Number of neurons (s+a)×256× 256× 256×1
Activation function ReLu

Number of networks 2
Learning rate 1.00e-04

Optimizer Adam

CVAE

Number of neurons(e) (s+a)×750×750×(2a+2a)
Number of neurons(d) (s+2a)×750×750×a

Activation function ReLU
Number of networks 1

Learning rate 1.00e-03
Optimizer Adam

Others

Batch size 256
Discount factor γ 0.99

Balances factors for OOD λ 0.995
Network update factors τ 0.005

B.2. Experimental Results

For the convenience of examining the trend in various per-
formance metrics during the algorithm training process, we
record the curves of rewards, cumulative cost, and state-
wise costs in both the POCE and baseline algorithm train-
ing. These experimental results, supplementary to the com-
parative experiments in the manuscript, serve to provide a
clearer understanding of the performance of the POCE and
baseline algorithms during the training process.
Performance on various tasks and behavioral samples.
Fig. 2 illustrates the testing curves of the POCE and base-
line algorithms for PointGoal and CarGoal tasks under var-
ious safety factors. The results from the graph indicate that
the curve of the POCE shows a stable variation and the cu-
mulative costs of the sample under different safety factors
all fall within the cost threshold range. Furthermore, the vi-
olation rate of state-wise costs for the POCE is consistently
lower than that of other baseline algorithms. The above
results demonstrate that the POCE algorithm ensures that
cumulative costs meet constraints for samples under differ-
ent safety factors, and it also surpasses other baseline algo-
rithms in terms of adhering to state-wise constraints.
The parameters safety factors φ and state-wise cost
thresholds D̄i. Fig. 3 illustrates the testing curves of the
POCE and baseline algorithms for the PointGoal and Car-
Goal tasks under different state-wise cost thresholds D̄i.
The results from the graph indicate that the POCE algo-
rithm, under various state-wise cost thresholds, consistently
satisfies cumulative cost constraints while providing com-
petitive reward returns. Additionally, we observed that as
the state-wise cost threshold is set lower, the violation rate
of state-wise costs increases, resulting in lower cumulative
costs and rewards.

B.3. Experimental Setting

This experiment is conducted on a server equipped with
an RTX 3090 for both training and testing. Additionally,
the provided code is compatible with training and testing
on both GPU and CPU. We provide a detailed explana-
tion of the experimental environment and dataset in Sec-
tion B.1. Table 1 displays the parameters of the neural net-
work model utilized in our POCE algorithm. Additionally,
detailed configuration information for the testing environ-
ment is provided in the code appendix. You can refer to
the README file in the appendix code for instructions on
installing and configuring the training and testing environ-
ment for the POCE model.
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