
SuGaR: Surface-Aligned Gaussian Splatting for

Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering

Supplementary Material

In this supplementary material, we provide the following

elements:

• Details about our regularization methods

• Details about the parameterisation of the bound gaussians

optimized during our joint refinement strategy.

• Additional implementation details.

• Quantitative results for 3D surface reconstruction

• Detailed quantitative results for real-time rendering of

real scenes, and mesh rendering ablation.

We also provide a video that offers an overview of the ap-

proach and showcases additional qualitative results. Specif-

ically, the video demonstrates how SuGaR meshes can be

used to animate Gaussian Splatting representations.

7. About our Regularization

As we explain in the main paper, it is possible to regularize

Gaussians with a simple term Rdensity that relies on the

density function rather than the SDF:

Rdensity =
1

|P|

∑

p

|d(p)− d̄(p)| (11)

This regularization term works well in practice, especially

for foreground objects, and allows for extracting good-

looking meshes. However, this regularization is not strong

enough for regularizing background accurately, and pro-

duces chaotic surfaces in the background, similarly to

vanilla Gaussian Splatting.

The SDF regularization allows for introducing a strong

depth regularization in the computation, as it uses distances

defined in the 3D space rather than density values. More-

over, using Gaussian splats facing the camera for computing

depth maps for the SDF estimator encourages visible Gaus-

sians to face cameras on average, which provides a useful

prior to regularize background compared to the simpler den-

sity loss.

8. Parameterisation of Gaussians bound to the

surface

As we explained in Section 4, once we have extracted the

mesh from the Gaussian Splatting representation, we refine

this mesh by binding new Gaussians to the mesh triangles

and optimize the Gaussians and the mesh jointly using the

Gaussian Splatting rasterizer. To keep the Gaussians flat

and aligned with the mesh triangles, we explicitly compute

the means of the Gaussians from the mesh vertices using

predefined barycentric coordinates in the corresponding tri-

angles during optimization. Also, the Gaussians have only

2 learnable scaling factors instead of 3 and only 1 learnable

2D rotation. Indeed, we do not optimize a full quaternion

that would encode a 3D rotation, as performed in [15]; In-

stead, we optimize a 2D rotation in the plane of the triangle.

Therefore, the Gaussians stay aligned with the mesh trian-

gles, but are allowed to rotate on the local surface. Like

the original model, we also optimize an opacity value and a

set of spherical harmonics for every Gaussian to encode the

color emitted in all directions.

In practice, for each Gaussian, we optimize a learnable

complex number x + iy rather than a quaternion, encod-

ing the 2D rotation inside the triangle’s plane. During op-

timization, we still need to compute an explicit 3D quater-

nion encoding the 3D rotation of the Gaussians in the world

space to apply the rasterizer. To recover the full 3D quater-

nion, we proceed as follows: For any 3D Gaussian g, we

first compute the matrix R = [R(0), R(1), R(2)] ∈ R
3×3

encoding the rotation of its corresponding triangle: We se-

lect as the first column R(0) of the matrix the normal of

the triangle, and as the second column R(1) a fixed edge

of the triangle. We compute the third column R(2) with

a cross-product. Then, we compute the matrix Rg encod-

ing the full 3D rotation of the Gaussian by applying the

learned 2D complex number to the rotation of the trian-

gle, as follows: R
(0)
g = R(0), R

(1)
g = x′R(1) + y′R(2)

and R
(2)
g = −y′R(1) + x′R(2), where x′ = x

|x2+y2| and

y′ = y

|x2+y2| .

Adjusting parameters for edition. Because our learned

complex numbers represent rotations in the space of the cor-

responding triangles, our representation is robust to mesh

edition or animation: When editing the underlying mesh

at inference, there is no need to update the learned 2D ro-

tations as they remain the same when rotating or moving

triangles.

Conversely, when scaling or deforming a mesh, the tri-

angle sizes might change, necessitating adjustments to the

learned scaling factors of the bound surface Gaussians. For

example, if the mesh size doubles, all Gaussian scaling fac-

tors should similarly be multiplied by 2. In our implemen-

tation, when editing the mesh, we modify in real-time the

learned scaling factors of a bound surface Gaussian by mul-

tiplying them by the ratio between (a) the average length

of the triangle’s sides after modification and (b) the average

length of the original triangle’s sides.

PSNR ↑ SSIM ↑ LPIPS ↓

Plenoxels [42] 21.07 0.719 0.379

INGP-Base [23] 21.72 0.723 0.330

INGP-Big [23] 21.92 0.744 0.304

Mip-NeRF360 [2] 22.22 0.758 0.257

3DGS [15] 23.14 0.841 0.183

R-SuGaR-2K (Ours) 19.70 0.743 0.284

R-SuGaR-7K (Ours) 21.09 0.786 0.233

R-SuGaR-15K (Ours) 21.58 0.795 0.219

Table 4. Quantitative evaluation on Tanks&Temples [16].

SuGaR is not as good as as vanilla 3D Gaussian Splatting in terms

of rendering quality as it relies on a mesh but higher than the other

methods that do not recover a mesh.

9. Additional implementation details

Implementation We implemented our model with Py-

Torch [25] and use 3D data processing tools from Py-

Torch3D [27]. We also use the differentiable Gaussian

Splatting rasterizer from the original 3D Gaussian Splatting

paper [15]. We thank the authors for providing this amazing

tool.

Mesh extraction. In practice, we apply two Poisson re-

constructions for mesh extraction: one for foreground

points, and one for background points. We define fore-

ground points as points located inside the bounding box of

all training camera poses, and background points as points

located outside. We chose this simple distinction between

foreground and background in order to design an approach

as general as possible. However, depending on the content

of the scene and the main objects to reconstruct, defining a

custom bounding box for foreground points could improve

the quality and precision of the extracted mesh.

Joint refinement. During joint refinement, we also com-

pute a normal consistency term on the mesh’s faces to fur-

ther regularize the surface. This term doesn’t affect perfor-

mance in terms of PSNR, SSIM, or LPIPS. However, it does

marginally enhance visual quality by promoting smoother

surfaces.

10. Additional Results for Real-Time Render-

ing of Real Scenes

We compute the standard metrics PSNR, SSIM and

LPIPS [44] to evaluate the quality of SuGaR’s rendering

using our extracted meshes and their bound surface Gaus-

sians. Results on the Mip-NeRF360 dataset are given in

Table 1 in the main paper. Results on Tanks&Temple and

DeepBlending are given in Tables 4 and 5. Tables 7, 8 and

9 provide the detailed results for all scenes in the datasets.

PSNR ↑ SSIM ↑ LPIPS ↓

Plenoxels [42] 23.06 0.794 0.510

INGP-Base [23] 23.62 0.796 0.423

INGP-Big [23] 24.96 0.817 0.390

Mip-NeRF360 [2] 29.40 0.901 0.244

3DGS [15] 29.41 0.903 0.242

R-SuGaR-2K (Ours) 27.31 0.873 0.303

R-SuGaR-7K (Ours) 29.30 0.893 0.273

R-SuGaR-15K (Ours) 29.41 0.893 0.267

Table 5. Quantitative evaluation on DeepBlending [12]. SuGaR

is not as good as as vanilla 3D Gaussian Splatting in terms of ren-

dering quality as it relies on a mesh but higher than the other meth-

ods that do not recover a mesh.

11. Quantitative comparison with NeuS [36]

Because the main motivation for SuGaR is to provide an ed-

itable and animatable 3DGS representation, we focused on

rendering metrics in the main paper. However, evaluating

the model with geometry metrics is also relevant to evaluate

the accuracy of the surface reconstruction.

We compare SuGaR with an enhanced implementation

of NeuS [36] leveraging hash encodings (Instant-NeuS) to

greatly accelerate training. This method reaches an opti-

mization time similar to SuGaR’s. Table 6 provides a quan-

titative comparison in real scenes, and Figure 8 provides a

qualitative comparison.

Barn Caterpillar Ignatius Meetingroom Truck

Instant-NeuS 0.8894 0.2034 0.0930 2.7102 0.2119

SuGaR (Ours) 0.2279 0.1611 0.0380 0.2394 0.0888

Table 6. Chamfer distance (↓) on scenes from Tanks&Temples.

SuGaR (Ours) Instant-NeuS SuGaR (Ours) Instant-NeuS

Figure 8. Qualitative comparison between SuGaR (< 2M tri-

angles) and Instant-NeuS (> 4M triangles). Even with less tri-

angles, SuGaR produces much finer results as well as better back-

ground geometry.

Instant-NeuS retrieves much lower quality meshes than

SuGaR on real scenes, as shown in Figure 8. Instant-NeuS

produces good-looking meshes on synthetic datasets or the

DTU dataset, which provides the foreground masks and al-

most perfect camera calibration. Instant-NeuS is however

not able to achieve a high-quality reconstruction of real

scenes with an unmasked background, even after tuning

the hyperparameters. On the contrary, as the teaser image

and the video show, SuGaR produces high-quality meshes

with background geometry even for casual captures with a

(a) 2,000 iterations (b) 7,000 iterations (c) 15,000 iterations

Figure 9. Refined SuGaR renderings with different numbers

of refinement iterations. 2,000 iterations are usually enough to

obtain high quality rendering (a), since the extracted mesh “tex-

tured” with surface Gaussians is already an excellent initialization

for optimizing the model. However, further refinement helps the

Gaussians to capture texturing details and reconstruct extremely

thin geometry that is finer that the resolution of the mesh, such as

the spokes of the bicycle, as seen in (b), (c).

(a) SuGaR render (b) Mesh (No texture) (c) Mesh normals

Figure 10. SuGaR renderings with (top:) 200,000 and (bottom:)

1,000,000 vertices. Even with low-poly meshes, the 3D Gaussians

bound to the mesh produce high quality renderings. Moreover,

low-poly meshes help to better regularize the surface.

low-cost smartphone and without needing any precomputed

mask. To the extent of our knowledge, no other hybrid rep-

resentation method is able to achieve the same performance

and versatility as SuGaR, in such a short training time.

12. Additional Results for Mesh Renderig Ab-

lation

We provide additional qualitative results to illustrate how

various parameters impact rendering performance.

First, we provide in Figure 9 a simple example show-

ing how the Gaussians constrained to remain on the surface

during refinement greatly increase the rendering quality as

they play the role of an efficient texturing tool and help re-

constructing very fine details missing in the extracted mesh.

Then, in Figure 10 we illustrate how the resolution of

the mesh extraction, i.e., the number of triangles, modifies

the rendering quality. For fair comparison, we increase the

number of surface-aligned Gaussians per triangle when we

decrease the number of triangles. Results show that increas-

ing the number of vertices increases the quality of rendering

with surface Gaussians, but meshes with lower triangles are

already able to reach state of the art results.

Finally, Figure 11 illustrates the benefits of using Gaus-

sians aligned on the surface as a texturing tool for render-

Figure 11. Qualitative comparison between (bottom:) a tradi-

tional UV texture optimized from training images, and (top:)

the bound surface Gaussians. Even though high resolution

UV textures have good quality and can be rendered with our

meshes using any traditional software, using 3D Gaussians bound

to the surface of the mesh greatly improves the rendering quality.

Meshes in these images have 200,000 vertices only.

ing meshes. To this end, we also optimize traditional UV

textures on our meshes using differentiable mesh rendering

with traditional triangle rasterization. Even though render-

ing with surface-aligned Gaussians provides better perfor-

mance, rendering our meshes with traditional UV textures

still produces satisfying results, which further illustrates the

quality of our extracted meshes.

Mip-NeRF360 [2] DeepBlending [12] Tanks&Temples [16]

Garden Kitchen Room Bicycle Counter Bonsai Stump Playroom Dr. Johnson Train Truck

200K vertices

R-SuGaR-2K 23.30 25.74 27.58 21.53 24.41 26.50 23.45 27.83 26.51 18.15 21.03

R-SuGaR-7K 24.99 28.78 29.47 22.69 26.86 29.33 24.45 30.02 28.41 19.82 22.31

R-SuGaR-15K 25.29 29.38 29.95 22.91 27.47 30.42 24.55 30.08 28.59 20.40 22.65

1M vertices

R-SuGaR-2K 23.56 26.15 27.68 21.80 24.62 26.70 23.56 27.93 26.70 18.32 21.09

R-SuGaR-7K 25.06 28.96 29.57 22.86 26.92 29.47 24.55 30.13 28.47 19.85 22.34

R-SuGaR-15K 25.36 29.56 30.03 23.14 27.62 30.51 24.70 30.12 28.71 20.50 22.67

Table 7. Quantitative evaluation of rendering quality in terms of PSNR on all scenes. A higher PSNR indicates better rendering

quality. We adjust the number of bound surface-aligned Gaussians per triangle when we reduce the number of vertices, aiming for a similar

count across all models. Results show that increasing the number of vertices (i.e. increasing the resolution of the geometry) increases the

quality of rendering with surface Gaussians, but meshes with less triangles are already able to reach state of the art results.

Mip-NeRF360 [2] DeepBlending [12] Tanks&Temples [16]

Garden Kitchen Room Bicycle Counter Bonsai Stump Playroom Dr. Johnson Train Truck

200K vertices

R-SuGaR-2K 0.713 0.859 0.881 0.572 0.844 0.895 0.641 0.883 0.864 0.694 0.787

R-SuGaR-7K 0.762 0.901 0.904 0.621 0.883 0.926 0.679 0.898 0.888 0.749 0.822

R-SuGaR-15K 0.771 0.907 0.909 0.631 0.890 0.933 0.681 0.897 0.888 0.763 0.827

1M vertices

R-SuGaR-2K 0.719 0.866 0.882 0.583 0.846 0.894 0.642 0.883 0.863 0.698 0.788

R-SuGaR-7K 0.764 0.903 0.905 0.628 0.884 0.925 0.680 0.899 0.887 0.750 0.821

R-SuGaR-15K 0.775 0.908 0.909 0.640 0.891 0.932 0.683 0.898 0.889 0.764 0.827

Table 8. Quantitative evaluation of rendering quality in terms of SSIM on all scenes. A higher SSIM indicates better rendering quality.

We adjust the number of bound surface-aligned Gaussians per triangle when we reduce the number of vertices, aiming for a similar count

across all models. Results show that increasing the number of vertices (i.e. increasing the resolution of the geometry) increases the quality

of rendering with surface Gaussians, but meshes with less triangles are already able to reach state of the art results.

Mip-NeRF360 [2] DeepBlending [12] Tanks&Temples [16]

Garden Kitchen Room Bicycle Counter Bonsai Stump Playroom Dr. Johnson Train Truck

200K vertices

R-SuGaR-2K 0.280 0.221 0.280 0.413 0.288 0.259 0.390 0.284 0.314 0.335 0.235

R-SuGaR-7K 0.232 0.175 0.252 0.363 0.245 0.228 0.345 0.260 0.277 0.274 0.187

R-SuGaR-15K 0.218 0.166 0.243 0.349 0.234 0.219 0.336 0.257 0.268 0.258 0.174

1M vertices

R-SuGaR-2K 0.281 0.215 0.282 0.408 0.287 0.262 0.391 0.286 0.319 0.333 0.236

R-SuGaR-7K 0.233 0.173 0.253 0.360 0.245 0.231 0.347 0.265 0.282 0.275 0.190

R-SuGaR-15K 0.220 0.165 0.246 0.345 0.234 0.221 0.338 0.261 0.273 0.260 0.178

Table 9. Quantitative evaluation of rendering quality in terms of LPIPS [44] on all scenes. A lower LPIPS indicates better rendering

quality. We adjust the number of bound surface-aligned Gaussians per triangle when we reduce the number of vertices, aiming for a similar

count across all models. The results indicate that the stronger regularity due to a smaller number of vertices leads to smoother surfaces and

higher LPIPS metrics when using the bound Gaussians.

