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9. Limitations of GAN-based techniques
Limitation 1: Failure to converge
When attempting to reproduce the results of GAN-based
approaches such as [13], we found it to be inefficient,
with the code failing to converge to realistic patterns in
some cases. In the experiment, we generated patches for
several datasets, including CASIA, wildtrack, and INRIA,
using the BigGAN generator [36] at an output resolution of
128 × 128, pre-trained on the ImageNet 1k dataset, with
the class vector set to ‘dog’, as in [13]. The resulting
patches, shown in Figure 7, were trained on different object
detectors, including YOLOv2, YOLOv3, and FasterCNN.
As depicted, the algorithm encountered challenges in
converging towards a naturalistic patch. Despite iterative
attempts, the optimization process struggled to yield a patch
that seamlessly integrates with the visual context.
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Figure 7. Failed attempts to generate GAN-based naturalistic
patches: (P1) on YOLOv3, (P2) on Faster-CNN, (P3), (P4), (P5),
and (P6) on YOLOv2.

Limitation 2: Too limited latent space
We run multiple experiments where we try to generate
naturalistic patches with different combinations of
transformations, i.e., without any transformations, with
basic transformations (i.e. random noise, contrast and
brightness variations), with basic transformations plus
rotation, and when using all the transformations including
the creases transformations that model wrinkles and creases
in a person’s cloth. Without loss of generality, we use the
Yolov3 detector as our victim model. As illustrated in
Figure 8-Left, for a norm threshold τ = 50, the same value
used in [13], with the increase in the number of considered
transformation the effectiveness of the attack decreases.

This could be explained by the fact that the latent space of
the GAN is too limited to find a patch that is robust to all
the basic, rigid and non-rigid transformations at once. To
illustrate this, we run experiments by adjusting the norm
threshold of the latent vector (i.e., τ = 1 and τ = 100),
and report the convergence of the mean average precision
(mAP) of the generated patch while training. As shown in
Figure 8-Middle, corresponding to a more strict constraint,
i.e., τ = 1, the resultant patch converges to a higher mAP
value leading to a lower attack success rate. We also test for
τ = 100, we notice that the generated patches converge to a
lower mAP compared to the τ = 1 case, which corresponds
to a higher attack success rate. We present the final mAP
for different experiments in Table 11. Figure 8 also shows
the generated patches for different norm thresholds, where
it can be noticed that the lower the threshold the more
naturalistic the generated patch looks. To conclude, the
norm threshold allows a trade-off between realism and
attack efficiency.

Transformations τ = 1 τ = 50 τ = 100

No transformation 52.81% 47.57% 49.67%
Noise 52.55% 48.51% 49.60%
Noise + Rotation 54.05% 50.44% 49.99%
Noise + Rotation + Creases 55.16% 52.07% 51.76%

Table 11. mAP of GAN-based technique when training using
different transformations.

We also used StyleGAN [15] to generate naturalistic
patches, targeting YOLOv3, using two latent vector
thresholds: 50 and 100. As depicted in Table 12,

Threshold w/o w

50 44.42 47.88
100 44.87 49.14

Table 12. StyleGAN-based patch performance with and without
transformation.

incorporating transformations resulted in less effective
patches. This observation aligns with our findings from
other GAN types. This will be included in the last version.

10. Transferability between Different Detector
Architectures

In Table 13, we present the transferability results.
Specifically, we utilize a patch generated for the
FasterRCNN architecture to evaluate various YOLO-based



Figure 8. Mean Average Precision (mAP) convergence curves when training a GAN-based technique with and without different
transformations. Illustrating the impact of adjusting the latent vector constraints on attack success rate (ASR) (Left: τ = 50 (same
used in [13]), Middle: τ = 1, and Right: τ = 100). Summary of these curves are presented in Table 11

detectors. Notably, our patch remains effective across these
detectors.

Detectors FasterRCNN

Yolov3 42.47%
Yolov3tiny 51.5%

Yolov7 50.09%
FasterRCNN 13.05%

Table 13. Transferability of FasterRCNN-based patches to Yolo
architectures.

11. Impact of Patch Size
To assess the impact of patch size on the efficacy of our
proposed adversarial patch, a series of digital experiments
were carried out on the INRIA dataset. The objective
was to evaluate how different patch sizes affect the
effectiveness of our approach. Figure 9 visually represents
the various scales employed to generate distinct patches
on the targeted objects. It is worth noting that a scale of
0.5 in our experiments corresponds to a scale of 0.2 as
described in [13]. By conducting these experiments and
analyzing the outcomes, we aimed to gain insights into
the relationship between patch size and the performance
of our adversarial patch, ultimately providing valuable
information for optimizing its effectiveness.

12. Physical World Experiments
12.1. Printed Patch Performance

To evaluate the real-world effectiveness of our proposed
adversarial patch, we conducted a physical attack
experiment where we printed the patch and tested its
performance in a real-world setting. In the experiment, we
took pictures of one person holding the printed patch and
tested whether it could successfully evade detection by an

Figure 9. Illustration of different patch scales.

object detector. For the with deformations setting, we added
random creases to the paper by crumpling this latter. The
results of this experiment are illustrated in Figure 10

We carried out our real-world experiments using a set
of 100 test samples, each featuring a person holding a
printed patch. These samples encompassed a range of
transformations, such as rotation, resizing, perspective
changes, and other variations. Moreover, we report the
attack success rate as an indicator of the effectiveness of our
approach in the context of these real-world transformations.
Our proposed patch maintained its effectiveness for
different distances from the camera, different angles,
different scales and for different lighting conditions. Table
14 reports the patch success rate in the physical world and
when using our DAP, only 35% of the time a person is
detected.

As shown in Figure 10, even after being rotated, our
patch was still effective in hiding the person from detection.
In contrast, when we applied the same deformations to the
naturalistic patches from [13] (NAP), we found that the
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Figure 10. Detection results when applying random creases and
rotations to the DAP patches (upper) for Yolov3tiny and NAP
patches (lower) for Yolov3 and Yolov3tiny.

patch was no longer effective in evading detection. This
highlights the strength of our proposed patch, which is
more robust to physical deformations and can maintain its
effectiveness even when the patch is crumpled and rotated.
As shown in Table 14, the detection recall dropped to 45%
even with the presence of multiple creases in the patch in
addition to applying rotations. In a physical setting, when

Benign NAP DAP

Without creases 100% 30% 75%
With creases 100% 20% 65%

Table 14. Attack Success Rate (ASR) in Benign scenarios and
when using DAP and NAP [13] when attacking Yolov3tiny with
and without creases.

using yolov7, a person is detected approximately 48% of
the time when using our proposed patch and 82% of the
time when using NAP (See Table 15).

Detector Benign NAP DAP

Yolov7 100% 18% 52%

Table 15. Attack Success Rate (ASR) in Benign scenarios and
when using DAP and NAP [13] when attacking Yolov7.

13. Adversarial T-shirt Performance
To thoroughly evaluate the robustness of our adversarial
patch, we subjected the T-shirt, along with our patch,
to aggressive transformations. Notably, even under

these challenging conditions, our patch consistently
outperformed the GAN based patch. Despite the
aggressive transformations applied to the T-shirt, our patch
demonstrated remarkable resilience and maintained its
effectiveness in evading detection (See Figure 11). In
contrast, the NAP patch struggled to retain its deceptive
properties under similar transformations (See Figure 12).
These findings provide compelling evidence of the superior
performance and robustness of our adversarial patch in the
face of extreme alterations. Our patch’s ability to withstand
aggressive transformations further underscores its potential
for reliable and effective evasion of detection systems,
solidifying its superiority over the GAN-based patch.

The key metrics used to evaluate the performance of the
detection system are as follows:
• True Positive Rate (TPR): This represents the percentage

of total results that are correctly identified as positive,
specifically when a patch is present and the person is
not detected (P = 1 & D = 0). It is computed as:

TPR =
TP

P
=

TP

TP + FN
.

• False Positive Rate (FPR): This indicates the percentage
of total test results that are incorrectly identified as
positive, occurring when a patch is present and a person
is detected (P = 1 & D = 1). It is calculated as:

FPR =
FP

N
=

FP

FP + TN
.

• True Negative Rate (TNR): This corresponds to the
percentage of cases (P = 0 & D = 1) where the patch
is not present, and the person is correctly detected. It is

calculated as: TNR =
TN

N
=

TN

TN+ FP
.

• False Negative Rate (FNR): This represents the
percentage of cases where the detector fails to
detect a person even though the patch is not
present (P = 0 & D = 0). It is calculated as:

FNR =
FN

P
=

FN

FN+ TP
.

These evaluation metrics allow us to assess the performance
of our adversarial patches and provide quantitative insights
into the detection results obtained during our experiments.

14. Adversarial Patches in Different Classes
In these experiments, we selected alternative target natural
images (i.e., Bicycle and Cat), and tested the performance
of the generated adversarial patches. To ensure practical
applicability, the patches were printed on A4 papers.
Figure 13 provides a visual representation of our patch.
Across various scales, rotation angles, lighting conditions,
and distances from the camera, our proposed patches
consistently exhibited high efficacy in concealing the
presence of a person and deceiving the detector.



Without Patch: Person Detected Without Patch: Person Detected

Without Patch: Person Detected Without Patch: Person Detected

With Patch: Person Not Detected With Patch: Person Not Detected

With Patch: Person Not Detected With Patch: Person Not Detected

Figure 11. DAP-based T-shirts performance while applying different deformations.
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Figure 12. NAP-based T-shirts performance while applying different deformations.
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Figure 13. Detection results for different angles, distances from the camera, scales, and lighting conditions for Cat and Bicycle-based DAP.


