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1. Overview
In this Supplementary Material, we first conduct the con-
vergence analysis of our proposed deep unfolding CP-PPA
framework in Sec. 2. Subsequently, we provide more details
and comparisons in Sec. 3, including detailed experiments
settings in Sec. 3.1, more comparisons results in Sec. 3.2,
performance under salt-and-pepper noise in Sec. 3.3, more
CS-MRI comparisons results in Sec. 3.4 and more visual-
ization results in Sec. 3.5.

2. Convergence Analysis
In the previous section (Sec. 3.2 in the main text), we re-
formulate the Eq. (1) into a more tractable form denoted as
Eq. (6). From this, we derive the following iterative steps:
Eq. (8), Eq. (9), and Eq. (10). Furthermore, we obtain the
deep unfolding form of the CP-PPA denoted as Eq. (15).

First, consider that D(x) = C2ReLU(C1), where C1

and C2 are convolutional operators. Let r(k) = x(k−1) −
η(k)Φ⊤y(k−1). By approximating based on Theorem 1
[27], we obtain:

∥D(x)−D(r(k))∥2ℓ2 ≈ α∥x− r(k)∥2ℓ2 , (20)

where α is a constant related to D(·) and can be merged into
the learnable parameter λ(k). Incorporating this relationship
into Eq. (8), we derive:

x(k) = argmin
x

λ(k)η(k)∥D(x)∥ℓ1+
1

2
∥D(x)−D(r(k))∥2ℓ2 .

(21)
Thus, we obtain the closed form of D(x(k)):

D(x(k)) = Sλ(k)η(k)(D(r(k))). (22)

Let D̃(·) be the left inverse of D(·), we derive:

x(k) = D̃(Sλ(k)η(k)(D(r(k)))). (23)
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Thus, the optimal solution to Eq. (8) is proven to be Eq.
(23).

Lemma 1 Let χ ∈ Rn be a closed convex set, ξ(x) and
φ(x) be convex functions, with φ(x) being differentiable.
Assume that the solution set of the minimization problem
min{ξ(x) + φ(x)|x ∈ χ} is nonempty. Then,

x∗ ∈ argmin{ξ(x) + φ(x)|x ∈ χ}, (24)

if and only if

x∗ ∈ χ, ξ(x)− ξ(x∗)+

(x− x∗)T ▽ φ(x∗) ≥ 0, ∀x ∈ χ.
(25)

Then, we delve into the convergence analysis of Eq.
(15). Assuming that the pair (x(k),y(k)) represents the op-
timal solution to Eq. (8) and Eq. (10), we can obtain the
following equations in the form of mixed monotone varia-
tional inequalities [14] according to Lemma 1:

f(x)− f(x(k)) + (x− x(k))⊤(

Φ⊤y(k−1) + α(k)(x(k) − x(k−1))) ≥ 0,

h∗(y)− h∗(y(k))+(y − y(k))⊤(

−Φv(k) + β(k)(y(k) − y(k−1))) ≥ 0.

(26)

By defining u = (x,y)⊤ and ζ(u) = f(x) + h∗(y), we
rewrite Eq. (26) as follows:

ζ(u)− ζ(u(k)) + (u− u(k))⊤

{
(
Φ⊤y(k−1)

−Φv(k)

)
+

(
α(k)(x(k) − x(k−1))

β(k)(yk − y(k−1))

)
} ≥ 0.

(27)

Substituting Eq. (9) into Eq. (27), we obtain:

ζ(u)− ζ(u(k)) + (u− u(k))⊤{
(
Φ⊤y(k)

−Φx(k)

)
+(

α(k)(x(k) − x(k−1))−Φ⊤(y(k) − y(k−1))

−Φ(x(k) − x(k−1)) + β(k)(yk − y(k−1))

)
} ≥ 0.

(28)



Hence, we can reformulate Eq. (28) as follows:

ζ(u)− ζ(u(k)) + (u− u(k))⊤{G(u(k))+

Q(u(k) − u(k−1))} ≥ 0,
(29)

where

G =

(
0 Φ⊤

−Φ 0

)
, (30)

and

Q =

(
α(k)I −Φ⊤

−Φ β(k)I

)
. (31)

Note that Eq. (29) is the generalized form of PPA [8, 14],
and in the case of α(k)β(k) > ∥Φ⊤Φ∥ℓ2 , Q is symmetric
and positive definite, thus the sequence {x(k)} and {y(k)}
converge to the solution point of the Eq. (6).

3. More Experiments

3.1. Experimental Settings

We employed a dataset of 41,000 images, with 40,000 for
training and 1,000 for validation, randomly selected from
the COCO2017 unlabeled images dataset [12]. During
training, we applied random cropping to resize images to
96 × 96 and employed data augmentation techniques, such
as scaling and rotation. We first pretrained the CPP-Net at
a CS ratio of 0.25. Subsequently, we fine-tuned the CPP-
Net at various CS ratios based on the pretrained CPP-Net at
0.25 CS ratio. LPIPS was obtained using VGG as the base
network. See Tab. 1 for detailed configurations.

Table 1. The configurations of pretraining and fine-tuning.

Configurations Pretraining Fine-tuning

base learning rate 8e-5 4e-5
min learning rate 1e-6 1e-6

optimizer AdamW AdamW
weight decay 0.05 0.05

optimizer momentum 0.9, 0.999 0.9, 0.999
batch size 8 8

training epochs 400 400
warmup epochs 10 10

warmup schedule linear linear
learning rate schedule cosine annealing cosine annealing

block size 32 32
stages conut 8 8

channel count 32 32
weight init trunc.normal (0.2) -

η(k) 1e-3 -
δ(k) 1e-3 -
λ(k) 1.0 -

sampling matrix init Guassian random matrix -

implementation Pytorch 1.12.0
CPU Intel(R) Xeon(R) Gold 6226 CPU
GPU Tesla V100 PCIe 32GB

3.2. More Comparisons Results

In this subsection, we evaluated the performance of our
CPP-Net with more competing methods and more CS ratios
to demonstrate the effectiveness of our proposed CPP-Net
across various CS ratios. The best and second-best results
in the tables are highlighted in red and blue colors, respec-
tively. First, we compared the performance of our CPP-
Net with 21 competing methods, including pure DL-based
methods (ReconNet [11], SCSNet [17], CSNet+ [18], DPA-
Net [23], MAC-Net [2], BCS-Net [33], NL-CSNet [4], Au-
toBCS [6], CSformer [25] and TCS-Net [7]), and deep un-
folding networks (DUNs) (ISTA-Net+ [27], OPINE-Net+

[28], AMP-Net [31], COAST [26], CASNet [1], DGUNet+

[13], FSOINet [3], TransCS [16], CT-Net+[30], DPC-DUN
[20], MAPUN [19] and OCTUF [21]) on the Set11 [11] at
seven CS ratios. The results are summarized in Tab. 2. It can
be seen that our CPP-Net outperforms other methods with
higher PSNR and SSIM on Set11 across all tested CS ratios.
We then evaluated the performance of our CPP-Net with
several recent methods on General100 [5] and Urban100 [9]
at three high CS ratios, as shown in Tab. 3. Moreover, the
LPIPS performance of recent methods at different CS ra-
tios is presented in Tab. 4. Our CPP-Net still outperforms
recent methods with higher image quality and human per-
ception quality across all tested CS ratios on the General100
and Urban100. In summary, our CPP-Net can achieve supe-
rior image quality and improved human perception quality
at both low and high CS ratios.

3.3. Performance under Salt-and-Pepper Noise

We introduced varying proportions (denoted as ς) of salt-
and-pepper noise to the images in Set11 and assessed the
performance of our CPP-Net in handling noisy images. The
variable ς denotes the ratio of pixels in the images affected
by salt-and-pepper noise. As shown in Tab. 5, ς of salt-and-
pepper noise is negatively correlated with the performance
of each method, but our CPP-Net still outperforms other
methods across all tested proportions of salt-and-pepper
noise.

3.4. More Comparisons Results of CS-MRI

In this subsection, we evaluated the performance of our
CPP-Net on the single-coil knee dataset available within
the fastMRI dataset [10] using the 1D Cartesian masks.
The competing methods include DC-CNN [15], RDN [22],
ISTA-Net+ [27], CDDN [32], ADMM-CSNet [24], and
HiTDUN [29]. Tab. 6 summarizes the results and Fig. 1 il-
lustrates the visual comparisons of different CS-MRI meth-
ods. Compared with other methods, our CPP-Net performs
better and reconstructs MRI images with more accurate de-
tails and less error.



Table 2. Comparisons of average PSNR (dB)/SSIM performance of various CS methods on Set11 at various CS ratios.

Dataset Methods 0.01 0.04 0.10 0.25 0.30 0.40 0.50 Avg.

Set11

ReconNet (CVPR 2016) 17.43/0.4017 20.93/0.5897 24.38/0.7301 28.44/0.8531 29.09/0.8693 30.60/0.9020 32.25/0.9177 26.16/0.7519
SCSNet (CVPR 2019) 21.04/0.5562 24.29/0.7589 28.52/0.8616 33.43/0.9373 34.64/0.9511 36.92/0.9666 39.01/0.9769 31.12/0.8584

CSNet+ (TIP 2020) 20.69/0.5238 24.54/0.7445 28.12/0.8664 32.20/0.9337 33.70/0.9495 36.41/0.9677 38.28/0.9771 30.56/0.8518
DPA-Net (TIP 2020) 18.05/0.5011 23.50/0.7205 26.99/0.8354 31.74/0.9238 33.35/0.9425 35.04/0.9565 36.73/0.9670 29.34/0.8353

MAC-Net (ECCV 2020) 18.26/0.4003 24.22/0.6982 27.68/0.8182 32.91/0.9244 33.96/0.9372 35.94/0.9560 37.67/0.9668 30.09/0.8144
BCS-Net (TMM 2021) 20.81/0.5427 24.90/0.7531 29.36/0.8650 34.20/0.9408 35.40/0.9527 36.52/0.9640 39.58/0.9734 31.54/0.8560

NL-CSNet (TMM 2021) 21.96/0.6005 26.26/0.8108 30.05/0.8995 - / - 35.68/0.9606 - / - - / - - / -
AutoBCS (TCYB 2023) 19.63/0.5605 24.73/0.7871 28.44/0.8827 33.56/0.9481 34.48/0.9549 36.51/0.9680 36.88/0.9732 30.60/0.8678

CSformer (TIP 2023) 21.86/0.6071 26.41/0.8058 30.09/0.8925 34.99/0.9534 - / - - / - 40.23/0.9802 - / -
TCS-Net (TCI 2023) 21.09/0.5505 25.46/0.7863 29.04/0.8834 33.94/0.9508 34.34/0.9541 35.27/0.9601 37.36/0.9723 30.93/0.8654

ISTA-Net+ (CVPR 2018) 17.45/0.4131 21.56/0.6240 26.49/0.8036 32.44/0.9237 33.70/0.9382 36.02/0.9579 38.07/0.9706 29.39/0.8044
OPINE-Net+ (J-STSP 2020) 20.02/0.5362 25.52/0.7879 29.81/0.8904 34.81/0.9514 36.00/0.9600 38.31/0.9724 40.18/0.9800 32.09/0.8683

AMP-Net (TIP 2021) 20.20/0.5581 25.26/0.7722 29.40/0.8779 34.63/0.9481 36.03/0.9586 38.28/0.9715 40.34/0.9807 32.02/0.8667
COAST (TIP 2021) 12.40/0.2637 23.55/0.7158 28.70/0.8609 33.96/0.9405 35.09/0.9504 37.09/0.9645 38.92/0.9743 29.96/0.8100
CASNet (TIP 2022) 21.76/0.6019 26.25/0.8118 30.29/0.9005 35.65/0.9592 36.90/0.9663 39.03/0.9760 40.93/0.9827 32.97/0.8855

DGUNet+ (CVPR 2022) 22.15/0.6114 26.83/0.8230 30.93/0.9088 36.18/0.9616 36.72/0.9661 38.99/0.9766 41.24/0.9837 33.29/0.8902
FSOINet (ICASSP 2022) 21.73/0.5937 26.37/0.8119 30.44/0.9018 35.80/0.9595 37.00/0.9665 39.14/0.9764 41.08/0.9832 33.08/0.8847

TransCS (TIP 2022) 20.15/0.5066 25.41/0.7883 29.54/0.8877 35.06/0.9548 35.62/0.9588 38.46/0.9737 40.49/0.9815 32.10/0.8645
CT-Net+ (KBS 2023) - / - - / - 30.16/0.8966 35.58/0.9570 36.73/0.9642 38.49/0.9752 40.90/0.9822 - / -
DPC-DUN (TIP 2023) 18.03/0.4601 24.38/0.7498 29.42/0.8801 34.75/0.9483 35.88/0.9570 37.98/0.9694 39.84/0.9778 31.47/0.8489
MAPUN (IJCV 2023) - / - - / - 30.19/0.9014 35.73/0.9602 37.08/0.9676 39.22/0.9775 40.98/0.9834 - / -
OCTUF (CVPR 2023) 21.75/0.5934 26.45/0.8126 30.70/0.9030 36.10/0.9604 37.21/0.9673 39.41/0.9773 41.34/0.9838 33.28/0.8854

CPP-Net (Our Method) 22.19/0.6135 27.23/0.8337 31.27/0.9135 36.35/0.9631 37.55/0.9696 39.53/0.9781 41.39/0.9842 33.64/0.8937

CPP-Net
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Figure 1. Comparisons of visualization, error maps and corresponding PSNR (dB)/SSIM/LPIPS performance of various CS-MRI methods
on the fastMRI dataset using 1D Cartesian masks at CS ratios of 0.05 and 0.10. The arrows point to details in the reconstructed image for
better comparison.

3.5. Additional Visualization Results

Fig. 2 shows the visualization of feature maps within the
third stage of the different cases in the ablation study, which
demonstrates that the integration of DPFB and IFS im-
proves the ability of the CPP-Net to capture and extract fine
texture details from the images.
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