
JoAPR: Cleaning the Lens of Prompt Learning for Vision-Language Models

Supplementary Material

A. Algorithm
The algorithm for JoAPR is as follows:

Algorithm 1 JoAPR Training Process

Input: Training dataset D : {(Xi, Y i)}Ni=1

1: Warmup the model using LWarmup;
2: for n = 1:Max epoch do
3: Fit the LDivide using GMM;
4: Determine thresholds θ1 and θ2;
5: Dc : {(Xc

i , Y
c
i ) | L < θ1 or p(gclean|L) > θ2}Nc

i=1

6: Dn : {(Xn
i ) | L > θ1 and p(gclean|L) < θ2}Nn

i=1

7: for m = 1:num steps do
8: Augment data as per Eq. (8);
9: Refurbish labels using Eqs. (9) and (10), yielding D̂;

10: D̃
′

= MixMatch(D̂)
11: Retrain model with D̃

′
using LRetrain;

12: Update prompt using gradient backpropagation;
13: end for
14: end for
15: Maximize P (Y |X) → Maximize P (Ỹ

′
|X)

B. Potential Issues with the Compensation
Term

Figure 3 indicates that in few-shot datasets with a limited
number of samples and high noise levels, the penalty term
can lead to a highly discrete distribution of loss values. Al-
ternatively, it may result in many noisy samples exhibiting
very low loss values, to the extent that the loss values from
noisy samples completely overshadow the distribution of
clean samples. The inclusion of a compensation term aids in
clustering the loss value distribution more tightly, narrow-
ing the gap between the maximum and minimum loss val-
ues. This clustering increases the mean loss values for both
clean and noisy data, thereby reducing their distribution
overlap to a certain degree. However, in few-shot datasets
with a larger number of samples, this approach could have
negative consequences. As shown in Fig. 6, under condi-
tions of a large sample size and high noise, the compensa-
tion term causes the loss value distribution of clean sam-
ples to more closely resemble that of noisy samples, lead-
ing to increased overlap. This phenomenon explains why
JoAPR* tends to perform better than JoAPR in few-shot
datasets with a greater number of samples.

C. Experiments on FGVCAircraft
Prompt learning methods often exhibit lower performance
on this dataset. Hence, we consider it more essential to im-
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(a) epoch=1, Pairflip=62.5%
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(b) epoch=10, Pairflip=75.0%
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(c) epoch=1, Pairflip=62.5%
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(d) epoch=10, Pairflip=75.0%

Figure 6. Pairflip noise injection into the SUN397 dataset is de-
picted with blue indicating clean data and red signifying noisy
data. Figures (a) and (b) illustrate the probability density distribu-
tion when fitting the LDivide without incorporating the compensa-
tion term. Conversely, figures (c) and (d) display the distribution
with the compensation term included in the LDivide fitting pro-
cess.

prove prompt learning performance on this dataset rather
than robustness. Nevertheless, our experiments on FGV-
CAircraft yield improvements, with a 3.8% and 3.1% in-
crease in accuracy under 50% Symflip and Pairflip noise,
respectively. It is crucial to note that even when dealing
with a completely clean FGVCAircraft dataset devoid of
any label noise, achieving a satisfactory model fit remains
challenging. Hence, we implement 150 epochs of Warmup
and employ GCE during this phase to mitigate overfitting to
noisy data.

D. More Analysis about JoAPR under 100%
Noise

Our framework excels under 100% noise due to CLIP’s
inherent prior knowledge and powerful zero-shot learning
ability, which allows us to accurately predict clean labels
using model predictions. And that is why we adopt a re-
furbishment strategy for prompt learning for VL-PTMs in
the case of label noise. We experiment on UCF101, where
CLIP’s zero-shot learning performance is comparatively
lower, showing a 53.5% accuracy boost. While significantly
improving, it slightly lags behind the two datasets in Tab. 5,
validating our analysis.
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Figure 7. The Few-shot curves for four datasets under 50% noise.

E. Few-shot Learning Analysis
As shown in Fig. 7, JoAPR significantly enhances the ro-
bustness of CoOp across various shot and noise types at a
noise rate of 50%.

F. Utilization in PLOT
For better generalization validation, we compare it with
PLOT [5]. As depicted in Tab. 6, JoAPR enhances the ro-
bustness not only of CoOp and CoCoOp but also of PLOT.

G. More discussion
While JoAPR has significantly enhanced the robustness of
prompt learning methods for VL-PTMs, it is essential to
acknowledge that JoAPR takes approximately two to three
times more time than the baseline due to “partition and cor-
rection”.

H. Additional Details on Training Procedures
The configuration of Warmup epochs and α1 across nine
datasets is detailed in Tab. 7. Specifically for Food101N,
the Warmup epoch is configured to 1 and α1 is set at 0.5,
with −H being utilized in lieu of LR during the retraining
phase. It’s important to note that fitting samples in some
datasets can be challenging. Therefore, we opt for an in-
creased number of epochs or lower penalty coefficients in

the Warmup phase, particularly when dealing with a low
noise ratio.

I. Illustrative Examples of Noisy Samples
In Fig. 8, we display the noisy samples in Food101N as clas-
sified by JoAPR, illustrating their original labels (in red)
and the refurbished labels post JoAPR’s modification (in
blue). As Food101N is a dataset for fine-grained classifi-
cation, it requires a more advanced capability to discern be-
tween noisy and clean data. Despite these complexities, the
efficacy of JoAPR in accurately identifying and refurbish-
ing these labels is remarkably evident.

Table 6. Comparison with PLOT

Dataset Noise Type Symflip Pairflip
Method\Noise Ratio 25.0% 50.0% 75.0% 25.0% 50.0% 75.0%

Caltech101 PLOT 78.10 65.33 41.20 76.57 45.93 14.70
JoAPR 88.87 87.90 83.27 91.47 91.40 89.40

Flowers102 PLOT 85.30 73.43 44.67 80.47 45.33 9.13
JoAPR 90.37 85.97 76.33 89.33 76.00 60.57

OxfordPets PLOT 73.60 58.07 28.67 71.70 42.63 13.20
JoAPR 86.90 88.10 88.30 88.53 88.77 86.33

DTD PLOT 54.67 42.13 23.87 51.33 30.50 10.17
JoAPR 59.13 56.40 49.13 59.03 54.40 46.70
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Figure 8. The visualization of label refurbishment by JoAPR in Food101N dataset noisy samples.

Table 7. The settings of Warmup epochs and α1.

Dataset Noise Type Symflip Pairflip
Config\Noise Ratio 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0%

ImageNet Warmup epochs 1 1 1 1 1 1 1 1 1 1 1 1
α1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

SUN397 Warmup epochs 1 1 1 1 1 1 1 1 1 1 1 1
α1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Caltech101 Warmup epochs 1 1 1 1 1 1 1 1 1 1 1 1
α1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

StanfordCars Warmup epochs 1 1 1 1 1 1 1 1 1 1 1 1
α1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

OxfordPets Warmup epochs 1 1 1 1 1 1 1 1 1 1 1 1
α1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

DTD Warmup epochs 1 1 1 1 1 1 1 1 1 1 1 1
α1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1

EuroSAT Warmup epochs 10 10 10 1 1 1 10 10 10 10 1 1
α1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1

Flowers102 Warmup epochs 20 20 20 20 20 20 20 20 20 1 1 1
α1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

UCF101 Warmup epochs 20 20 20 20 20 1 20 20 1 1 1 1
α1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5


