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8. Model details

The hyper-parameters of our model architecture are listed
in Tab. 3. All models are trained using the Adam optimizer
with a learning rate of 0.0003, and batch size 32 with 8 Ge-
force 3090. The VAE are trained simultaneously with the
policy network using the online simulated learned data and
offline expert data.

Table 3. Hyper-parameters.

Hyper-parameter | Value
History time steps 10
Future time steps T’ 10
Route point number 30
Neighbor number 6
Neighbor maximum distance 20 m
Origin perturbation std 2m
EGAT hidden size 512
VAE latent dim 8
VAE encoder layer number 1
VAE decoder layer number 1
Policy Network layer number 1
LQR acceleration weight 74 1
Learner VAE loss weight A 1
Training simulation interval N 50
Training simulation length .S 50

9. Baseline details

SUMO uses the mobil model and IDM with various tuned
parameters (including desired speed, acceleration, deceler-
ation, minimum gap, time headway) for 6 types (including
motorcycle, car, taxi, bus, medium and heavy vehicle) of
vehicles. These parameters are shown in 4.

BC: our model without the VAE, LQR and the on-road
projection module.

All RL baselines are trained using IPPO with default pa-
rameters in the Ray library. MARL: the reward is the sum
of a displacement reward (weight 0.01), an off-road penalty
(weight 1), and a terminal reward (weight 0.01).

MARL+BC: adds a BC term (weight 1) to the loss func-
tion of the MARL policy.

PS-GAIL: learns a policy using reward functions from
a discriminator network, which is also trained using Adam
with a learning rate of 0.0003.

RAIL: PS-GAIL with additional rewards from MARL.

10. Dataset Preparation

The data preparation process of pPNEUMA dataset is intro-
duced in this section.

10.1. Trajectory Data

The trajectory data is downloaded from the official web-
site (https://open—-traffic.epfl.ch), specifi-
cally the data recorded by ALL Drones during all periods
except for the first period (8.30-9.00 at 2018/10/24) due to
a large position error caused by wind gusts.

10.2. Routing

To determine the route for each vehicle trajectory, we used
the method in https://github.com/wannesm/
LeuvenMapMatching. However, this method generated
many circular routes that are rarely observed in real data.
To address this issue, we skipped the intermediate routing
node points if they were far away from the actual trajec-
tory, which helped reduce the number of unrealistic circular
routes.

10.3. Road Network

The map information is downloaded from OpenStreetMap,
and then we import it into SUMO to generate the road net-
work. We only include highways for vehicles in the road
network while excluding other road types, such as side-
walks and railways. However, we find that the map data
is not always accurate, so we manually adjust the road
shapes to reduce the number of off-road driving cases in the
recorded trajectory data. Additionally, we modify the lane
connection relations in junctions to alleviate traffic jams
during SUMO simulations.

10.4. Traffic Light

Because the traffic light information is not provided by the
dataset, we design an algorithm to estimate traffic light in-
formation from the recorded trajectory data.

Firstly, we filter all vehicle starting and stopping points
near all signaled intersections from the trajectory data.

Secondly, we cluster these points based on their located
edge, as we assume that all lanes on one edge are controlled
by the same traffic light.

Thirdly, we obtain all time steps when each traffic light
turns green by identifying its corresponding clustered points
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Table 4. Sumo hyper-parameters.

Hyper-parameter \Motorcycle Car

bus medium vehicle heavy vehicle

desired speed (m/s) 30 30
acceleration (m/s?) 2.5 2.5
deceleration (m/s?) 10.0 10.0
minimum gap (s) 0.1 0.1
time headway (s) 0.1 0.1

11.70 30 17.38
2.5 25 25
10.0 10.0 10.0
0.1 0.1 0.1
0.1 0.1 0.1

whose time gap to the previous point is larger than seven
seconds. Similarly, we can obtain all time steps when it
turns red.

Fourthly, based on all the time steps when the traffic light
turns green, we need to calculate the traffic light’s first turn-
ing green time step, green time, and cycle length. We as-
sume that all traffic lights in the same junction have the
same cycle length, which can only be 45 or 90 seconds. To
estimate the first green time and cycle length, we use a cost
function, where a negative cost is given if the filtered turn-
ing green time steps match the estimated turning green time
step, and a positive cost is given if there is no filtered turning
green time step matching the estimated turning green time
step. By enumerating all first turning green time steps with
an interval of 0.01 seconds, and cycle length of 45 or 90
seconds, we output the result with the minimal costs. Based
on the other traffic light turning green time steps in the same
junction, we can obtain its turning red time. If there is no
other traffic light in the same junction, we need to estimate
its turning red time as we do in the estimation of green time.
Based on the turning red time and the turning green time, we
can obtain the green time of each traffic light.

11. Runtime

We perform runtime experiments using a single Nvidia
GeForce GTX 1080 GPU and an Intel i7-8700@3.2GHz
CPU. These experiments take into account all components
of our traffic model, including input preparation, trajec-
tory prediction, and action generation. The runtime results
for all time step are recorded during the long-term evalua-
tion, as shown in Fig. 3. We can see that the runtime in-
creases almost linearly with the number of agents. Besides,
our method can finish one simulation step of thousands of
agents within an acceptable time limit (smaller than 1 sec-
ond).

12. Qualitative results

12.1. Prediction and Planned Trajectories

In Fig. 4, we present the trajectories produced by our
context-conditioned VAE during training. Based on the
augmented past trajectory and context information, our pol-

Figure 3. Runtime of each time step during the long-term evalua-
tion.
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icy network predicts a future trajectory, which is subse-
quently refined by the LQR module, in different scenarios
such as lane keeping, turning, and lane changing. The re-
sults illustrate that our context-conditioned VAE is capable
of generating a wide range of past trajectories that encom-
pass the distribution of possible policies, while remaining
reasonable and closely resembling the actual past trajec-
tory. Moreover, our method accurately predicts future tra-
jectories that closely align with the actual path, based on the
augmented history and context. Additionally, the incorpo-
ration of the LQR module enhances the smoothness of the
trajectory. Importantly, our approach also demonstrates the
ability to generate diverse behaviors that comply with the
surrounding environment.

12.2. Statistical Distribution

In Fig. 5, we illustrate the distribution of speed and dis-
tance to the leading vehicle during long-term simulations.
Our method produces more similar speed distributions to
the ground truth than SUMO since the Intelligent Driver
Model (IDM) always aims to move at the highest speed.
Furthermore, our method generates leader distance distri-
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Figure 4. Trajectories augmented by our context-conditioned VAE, predicted by our policy network and subsequent planned trajectory by
the LQR module in lane keeping, turning and lane changing scenarios.



butions that closely match the ground truth.

13. Road Shape Change Experiment

Our microscopic long-term traffic simulators can help trans-
portation engineers and planners to analyze and predict the
impact of microscopic adjustments on traffic patterns with-
out disrupting real-world traffic. For example, it can help
analyze how changing road shape affects traffic patterns.
In Fig. 6, we present the mean road density and speed
changes in our simulator after modifying several roads’
shapes. We can see that a local microscopic modification
in road network can causes traffic congestion or alleviation
in distant areas.



0.16

0.14

0.12 A

0.10 A

0.08 A

Probablity Density

0.06 A

0.04 A

Mean Density Change (veh/km)
7

Emm Ground Truth
QOurs
SUMO

Probablity Density

20

10 15
Speed (m/s)

0.16 A

0.14

0.12 A

0.10 A

0.08 A

0.06 A

0.04 A

0.02 A

0.00 -

B Ground Truth
QOurs
SUMO

20 40 60
Leader Distance (m)

0

Figure 5. Distributions of speed and leader vehicle’s distance in long-term evaluation.
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Figure 6. Mean density and speed changes after modifying road network.
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