Supplementary Materials:
Learning Degradation-Independent Representations for
Camera ISP Pipelines

A Simulated Image Processing Pipelines

As in [1, 10], we follow the most common ISP modules, which include the following
typical stages:

(1) Optics and Sensor: The sensor captures illumination through the optics and produces
RAW images with pixel values that are proportional to the intensity of illumination.

(2) Noise Reduction: Noise reduction is the process of removing the noise from the
imaging signals, which will also blur the images. The noise is generally considered
to be a random variable with zero mean in the simulation.

(3) Demosaicking: The RAW pixels of the color filter array pattern are converted to
RGB values for each pixel by performing interpolation.

(4) Digital Gain and White Balance: The RAW pixel values are gain-adjusted and a
white-balance correction is applied to the raw RGB values

(5) Color Space Transform: This step transforms the raw RGB values to CIE XYZ color
space.

(6) Tone Correction: This step applies gamma curves and adjusts the image contrast by
histogram operations to improve the appearance.

(7) Sharpening: This enhancement process is to compensate for the outline of the image,
strengthening the edges and enriching the image details.

(8) Compression: Images are compressed by JPEG compression for storage

We adopt an ISP model [10] to mimic the steps (2)~(8) and generate ISP-degraded
images for model training. We set the operational range of noise variance to [0.15, 0.35],
and the operational range of compression quality factor to [5, 45].

B Mutual Information Estimation

Proposition 1. Let x and 'y represent two random variables, the J = p(x,y) and M =
p(x)p(y) are the joint and the product of marginals of the two variables, respectively.
The mutual information between the variables satisfies:

I(x;y) := Dysp(J; M)
>E.ng [0 (=Fu(2))] = Eorm [0(Fu(2)] (1)

where o (t) = log(1 + €), and the discriminator function F,, [8] is modeled by a neural
network with parameters w.



Table I: Recommended final layer activation functions and their conjugate functions.
This table comes from [8].

Name Output activation g domg+  Conjugate g* ()
Kullback-Leibler (KL) v R exp(t — 1)
Reverse KL —exp(—v) R_ -1-log(—t)
Pearson 2 v R P+t
Square Hellinger 1 — exp(—v) t<1 s

Jensen-Shannon  log(2) — log(1 + exp(—v)) ¢ < log(2) —log(2 — exp(t))

Proof. According to the variational estimation of f-divergences [7], we have

Dy(P(|Q) = / a@) sup 29 g ()da

tedomgx q(x)

> sup ([ ptaions - [ oy )a) @
= s (Eznp[V(2)] — Esnglg™(V(2))])

where the function g* is a convex conjugate function [2,8] of a convex, lower-semicontinuous
function. The function g* is defined as

g (t)= sup {ut— f(u)} 3)

u€domy

We parameterize V using a neural network with parameters w and write V,,. We assume
the the form of the function V,, = g¢(F.(x)). Given two probability distributions
J = p(z,y) and M = p(x)p(y), their f-divergence satisfies:

Dy(J[IM) = S}lp(Ezu 97 (Fuo(2))] = Ezromlg™ (95 (Fu(z))]) @)

where gy is an activation function specific to the f-divergence used. Table I provides
the commonly used g; and the convex conjugate function g*. According to this table,
for the JSD based divergence, we have g;(z) = log(2) — log(1 + exp(—=z)) and
g*(x) = —log(2 — exp(z)). By substituting them into Eq. (4), we have

Ezns[95(Fu(2))] = E [log2 — log(1 + exp(—Fu(2)))]

=E. j[log2 — o(—F,(2))] )



E.om [g7 (97 (Fu(2)))]

= EZ’NM _—log(2 _ eXPIOgQ—IOg(l-‘reXP(—fw(z/)))):|

=E. oM [—log(2 —2(1 + eXp(*fw(Z/))A))]

- N exp(—Fu(2))
=E, M I 1 g(2 1+ exp(_]-"w(z’)) ):| 6
I 2exp(—Fu (') )exp(Fu (%)) ] ©
M e (Fu (@) + oxp(—Fu () exp(Fu ()
r 2
=E. M _—log(em)(}'w(z’))—kl)}

= E.on [~ (log2 — log(exp(Fou(2')) + 1))]
= E.om [—10g2 + 0(Fu(2)]

Combining Eq. (5) and Eq. (6), we can rewrite Eq. (4) as a JSD-divergence based form:
Dysp(J|IM) = S}lp(Ezw [log2] + E.y [0 (—Fu(2))]

+Evrona [1082) — Evvona [0(Fu(2)]) @
>Ears [~0(~Ful(2))] ~ Evona [0(Fu(2))]

C Self-Supervised Learning for Baseline DiR

The learning objective of the DiRNet is defined as:

LL = (r(o);xl|x2) — I(r(o);xl) 8)

view

£12)sz = (r(O); X2|X1) - I(r(O)ﬂ XZ) )
The average of the two functions Eq.(8) and Eq.(9) is

I(r©:x) +I(r®:x I(r©: xq|x5) 4+ I(r(®: x,|x

Following [4], the conditional mutual information I (r(o); X1|x2) satisfies the following
proposition:

Proposition 2. Given two degraded observations x1 and X from the same degradation-

free image, and the baseline DiR representation v%), the conditional mutual information
satisfies

I(r; %1 [x2) < Epey ) [Prr (0 [x1, %2) [0, (£ x2) )] (1



Proof. As the two-view observations x; and xs can produce a shared degradation-
independent representation r(°), the I(r(®); x;|x,) can be expressed as:

(0)
0). _ p(r'?]x;,x2)
I(r( )7X1|X2) = Ep(xhxz)Ep(r(O)\xl,xz) {1ng(r(0)|)(2) }

p(r(o) X1, X2)p<p (r(o) |X2)}
Py (1"(0) |X2)P(r(0) |X2)

= EP(Xl,X2)Ep(r(O)|x1,xz) |:10g
Po(rV [x2)
p(r@]xy)

= Ep(xy ) [PKL (D V]x1,%2) [ [Py (1P x2))] — Epoea) [P (p(r© [52) [P (£ 32) )]
< Epy o) [PxL (0 [x1, %2) [Py (1O [x2) )] (12)

= Ep (s ) [PrL (P [x1, %2) [ (0O 32))] + Epr0) 5y 32) {log

where the above bound holds tight when p,,(r(®)|x;, x5) coincides with p,,(r(®|x;).
Similarly,

I(r:x21x1) < Epey ) [Prcr (00 1, %2) [0 (£ x1) )]

As the DiRNet used to extract r(°) is shared by the two-view observations, we have
p(-) = py(-). Therefore, the upper bound of Eq. (10) is:

I(r©®: %) 4+ I(r®:; x
Eaverage S - ( 1) 9 ( 2)) + )‘EP(X1,X2) [DAKL] (13)

where ) is the trade-off parameter and

1
Pact =5 (DKL<p<r<°>|xl,m> | 9o (@ x1)) + Dkr (p(r@ |x1, x2) ||p¢<r<0)><2>>>

2
(14)
Finally, the loss for baseline DiR learning is
I(r(0)§ x1)+ I(I‘(O); X2)
Lo=— 5
+ AEp(x, x5) [DaKL] (15)

+ BDKL p(I‘(O)) ||N(O,I) .

D Network Structure

In this section, we depict the detailed network structures used in our experiments. Table I1
depicts the detailed network structure for objection detection, image segmentation, and
image restoration experiments.



Module ‘ Layer ‘ Parameter
Conv k=5,s=1,p=2,c=64
DiRNet (DfRNet) Conv x3 k=4,s=2,p=1,c=064
ResBlock x2 k=3,s=1,p=1,c=064
A 3 x 3 Conv x4 k=3,s=3,p=1,c=064
3x3Conv|k=3,s=3,p=1,c=128
3x3Conv|k=3,s=1,p=1,c= 256
Ao G-Conv x2|AvePooling 256 x 1 x1
FC c = 256 x 4608 (512 x 3 x 3)
Reshape 256 x 512 x 3 x 3
As | 3x3Convx4 | k=3s5=3p=1c=64
ResBlock x2 k=3,s=1,p=1,c=64
TranConv x 3 k=4,s=2,p=1,c=64
Decoder D. Conv k=5s5s=1,p=2,¢c=3

Table II: Detailed parameters of the network structure for the objection detection, image
segmentation, and image restoration experiments. The TranConv denotes the transposed
convolution. In the parameter column, k, s, p and ¢ denote the kernel size, stride, padding,
and the channel of the output feature, respectively. In the table, the 1 x 1 convolution
layers in the A2 module are omitted where the parameters are set s = 1, p = 0.



E Experiments on the Classification Task

DIM

DiRNet

DiRNet+Alignment

Fig. I: Visualization of the representations by t-SNE on noisy Fashion-MNIST test sets
at different noise levels (standard derivations o = 15, 25, 35).

DiRNet

DiRNet+Alignment

Fig. II: Visualization of the KNN classification results of noisy test images (Fashion-
MNIST) using our DiR representations.
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Fig. III: Visualization of the KNN classification results of noisy test images (CIFAR-10)
using our DiR representations.

In this section, we experiment with our method on the classification task, where the test
images are degraded by random noise. In these experiments, we replace the convolution
layers in the DiRNet, and DfRNet with FC layers and generate 64-dimensional represen-
tations for the classification experiments. We add Gaussian noise to the degradation-free
images from the Fashion-MNIST dataset and CIFAR-10 dataset to generate ISP-degraded
images for evaluation. A KNN classifier is used to test the classification task with our DiR
representations. Fig. II and Fig. III show the qualitative results of 10 nearest neighbors.

In Fig. I, we visualize the resulting representations of different classes by t-SNE
[5]. The Deep InfoMax (DIM) [3] method is adopted to compare, which achieves
unsupervised learning of representations by maximizing mutual information between
an input and the output of a deep neural network encoder. We can observe that the
results of clustering with the proposed DiRNet representations can perform robustly
across different noise levels, while the straightforward mutual information maximization
method DIM fails in these cases.

F More Qualitative Results on the Image Restoration Task

In this section, we present more results on the image restoration task. Fig IV, Fig V,
and Fig VI show the restored results on real-world noisy images from the PolyU [11],
Nam [6], and DND [9] datasets, respectively.
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Degraded Image MPRNet er SCPGab

Fig. IV: Qualitative comparison on real-world ISP-degraded images of PolyU dataset [11].
Please zoom in for a better view.
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Fig. V: Qualitative comparison on real-world ISP-degraded images of Nam dataset [6].
Please zoom in for a better view.
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Fig. VI: Qualitative comparison on real-world ISP-degraded images of DND dataset [9].
Please zoom in for a better view.
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G Qualitative Results of Ablation Study

In this section, we provide the more qualitative comparison results of different configura-
tions in DiR learning. The results are shown in Fig VII. We can observe that the baseline
DiR outperforms the naive auto-encoder learning. The alignment network .4 and the

pilot DfR T collectively contribute to improving the performance of the baseline DiR.

Degraded Image Auto-Encoder Baseline DiR Baseline DiR + A Ours (Full)
(w/o guidance)

Fig. VII: Visual comparison of different configurations of the DiR learning. Please zoom
in for a better view.
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